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Abstract

Strongly correlated systems, i.e., quantum materials for which the interactions
between its constituents are strong, are good candidates for the development of ap-
plications based on quantum-mechanical principles, such as quantum computers.
Two paradigmatic models of strongly correlated systems are heavy-fermionic sys-
tems and one-dimensional spin—% systems, with and without quenched disorder.
In the past decade, improvement in computational methods and a vast enhance-
ment in computational power has made it possible to study these systems in a a
non-perturbative manner. In this thesis we present state-of-the-art numerical meth-
ods to investigate the properties of strongly correlated systems, and we apply these
methods to solve a couple of selected problems in quantum condensed matter the-
ory.

We start by revisiting the phase diagram of the Falicov-Kimball model on the
square lattice which can be considered as a heavy-fermionic systems. This model
describes an interplay between conduction electrons and heavy electrons and re-
veals several distinct metal-insulator phase transitions. Using a lattice Monte-Carlo
method, we study the transport properties of the model. Our analysis describes the
role of temperature and interaction strength on the metal-insulator phase transitions
in the Falicov-Kimball model.

The second part of the thesis investigate the spatial structure of the entanglement
in ground and thermal statesof the transverse-field Ising chain. We use the logarith-
mic negativity as a measure for the entanglement between two disjoint blocks. We
investigate how logarithmic negativity depends on the spatial separation between
two blocks, which can be viewed as the entanglement analog of a spatial correla-
tion function. We find sharp entanglement thresholds at a critical distance beyond
which the logarithmic negativity vanishes exactly and thus the two blocks become
unentangled. Our results hold even in the presence of long-ranged quantum cor-
relations, i.e., at the system’s quantum critical point. Using Time-Evolving Block
Decimation (TEBD), we explore this feature as a function of temperature and size of
the two blocks. We present a simple model to describe our numerical observations.

In the last part of this thesis, we introduce an order parameter for a many-body
localized spin-glass (MBL-SG) phase. We show that many-body localized spin-glass
order can also be detected from two-site reduced density matrices, which we use
to construct an eigenstate spin-glass order parameter. We find that this eigenstate
spin-glass order parameter captures spin-glass phases in random Ising chains, both
in many-body eigenstates as well as in the nonequilibrium dynamics, from a local
in time measurement. We discuss how our results can be used to observe MBL-SG
order within current experiments in Rydberg atoms and trapped ion systems.
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Chapter 1

Introduction

1.1 Collective phenomena

Nature provides us with plenty of collective phenomenon in essentially every as-
pect of our everyday life. For instance, we are used to the fact that matter (a system
of many particles) can organize itself into a variety of phases with different degrees
of order. Each of these ordered states constitutes a collective behavior of many par-
ticles. These phases can transform to other phases through a so-called phase tran-
sition. The understanding of these states enables us to predict and control several
properties that a material in a given phase will have. This understanding, therefore,
is the base of the most important technological advancements achieved in the last
century. Therefore, at the heart of condensed matter physics is the necessity to un-
derstand how to cope with systems consisting of many (more than three) interacting
particles, for which exact calculations become impractical. The emergence of many-
body effects gives rise to many of the collective phenomena which are the result of
electron correlations — when each electron’s view of its surroundings is influenced
by the presence of other electrons. To understand and manipulate such phenomena
is the challenge faced by condensed matter physicists.

A general criterion for the phenomena of ordering in matter was first formu-
lated by L. D. Landau who recognized that symmetries can be used to characterize
phases of a system[1, 2]. This constituted the first modern theory for phase tran-
sitions. Based on this, a successful program followed over several decades which
consisted of the proposal of specific models (simple enough for us to perform calcu-
lations/simulations) and the explicit investigation of how the phenomena of phase
transitions according to Landau’s criterion is captured by them.

Depending on the nature of the phase transition, the transitions come in two
types: classical and quantum|[2, 3, 4].

1.1.1 Classical phase transitions

Classical Phase transitions (CPT), also called thermal phase transitions, are charac-
terized by cusp in the thermodynamic properties of a system. The interplay between
the energy of a system and the entropy of its thermal fluctuations will lead to a CPT.
In 1933, Paul Ehrenfest introduced the first classification of of phase transitions on
the basis of jumps in derivatives of the thermodynamic free energy with respect to
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other thermodynamic variables. Although Ehrenfest’s classification has been found
to be an incomplete method of classifying phase transitions, it was the starting point.

There are two types of phase transition that are important in condensed matter
physics: first order (discontinuous) and second order (continuous)|[2, 4, 5].

First-order phase transitions exhibit a discontinuity in the first derivative of the
free energy with respect to some thermodynamic variable. During the transition,
the system undergoes a latent heat, which means the system either absorbs or re-
leases a fixed (and typically large) amount of energy per volume. In this process,
the temperature of the system will stay constant as heat is added and the system is
in a coexistence-phase regime in which some parts of the system have completed the
transition and others have not.

Second-order phase transitions (continuous phase transition) are continuous in
the first derivative but exhibit discontinuity in a second derivative of the free energy.
A continuous phase transition can usually be characterized by an order parameter!,
a concept first introduced by Landau. An order parameter is a quantity? that is
zero in one phase, unordered phase, and non-zero and non-unique in the other ordered
phase. For instance, the magnetization can be considered the order parameter at
a ferromagnetic-paramagnetic phase transition. Note that finding an appropriate
order parameter can be a complicated problem by itself.

The critical behavior at a phase transition is completely characterized by the set
of critical exponents. One of the features of continuous phase transitions is univer-
sality, i.e., the critical exponents are the same for entire classes of phase transitions
which may occur in very different physical systems. For example in chapter 3, the
Falicov Kimball model has the same universality class as the classical Ising model
at strong interaction limits. The associated exponents are characteristic for the con-
tinuous phase transitions regardless of being classical or quantum.

Important quantity that grows to infinity at the transition is the correlation length
¢. It quantifies the correlations between spatially separated parts of the system.

In the vicinity of criticality for both classical and quantum cases we have

E=t", (1.1)

where v is the correlation length critical exponent and t is the dimensionless distance
from the critical point. For CPT, t is the reduced temperature t = |T — T,|/T,.

1.1.2 Quantum phase transitions

Quantum phase transitions (QPT) occur when a system changes its state of matter
at zero temperature due to quantum fluctuations (compared to thermal fluctuations
in CPT). Such a QPT influences large area of the phase diagram, as compared with
thermal fluctuations. The generic phase diagram for QPT is depicted in Fig. 1.1[2].
Such states of matter can be characterized by an order parameter. Often, we are

1One can also define a order parameter for a first order phase transition
21t can be a thermodynamic quanity
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interested in the continuous quantum phase transitions where the order parameter
vanishes continuously upon approaching the QPT from the ordered side[2, 4]. In
this case, the transition is called quantum critical since a number of physical quan-
tities diverge at the critical point in a power-law fashion. Often there are many
competing interactions (repulsive or attractive) in the vicinity of a quantum criti-
cal point so that tiny change in the control parameter will favor one type of order
over another. Since QPT happens at zero temperature and system is at its ground
state, one might think that such phase transitions are not relevant to the real world.
However one should note that many finite temperature properties of a system can
be explained by understanding its quantum critical point (QCP). A QCP is a point
at which the ground state energy of the system is a non-analytic function of some
parameter which is different from temperature. For example in the case of the trans-
verse field Ising model (TFIM) with nearest neighbour interaction,

1
Hrrim = —QZ(]‘TZ?CU?H +g07), (1.2)

this parameter is the transverse field g. For TFIM at QCP, the the energy difference
A between the ground state and the first excited state (known as the energy gap)
vanishes. When g in the Hamiltonian of the system increases from zero, A decreases
till it vanishes at the QCP as

Ac|g =g, (1.3)

where v and z are the critical exponents related to the QCP. This means that system
is gapless at QCP. Fig. 1.1 describes the generic phase diagram of a quantum phase
transition and also a classical phase transition. In the table 1.1, one can see the critical
behaviour and corresponding critical exponents of CPT and QPT.

1.2 Strongly correlated systems

The physical systems which are well understood are those systems that can be mod-
eled with ensemble of free particles. For example semiconductors and most metals
can be described as having non-interacting electrons. This is because the interaction
(Coulomb) energy of electrons is much smaller than their kinetic energy. However,
there are important class of systems so called strongly correlated systems for which
the interactions between particles are not weak. These interactions play a an impor-
tant role in the properties of such systems and therefore these interactions should be
taking into account.

Lattice models of correlated fermions appear in a wide variety of physical sys-
tems, from condensed matter, where they are used to study low-temperatures mod-
els of, e.g., transition metals and intermetallic rare earth and actinide compounds,
to quantum chemistry and so on. Many of these systems exhibit a number of phases
that arise out of the competition between different degrees of freedom which finally
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TABLE 1.1: Different critical exponents in classical and quantum phase
transitions.

CPT

QPT

[ ~(T.—=T)F for T<T.&(T—T.)
(p(x)) =0 for T > T,
with (¢(X)) as thermal expectation
value of the ordered parameter

¢~ (T—T.) v withv for
correlation length exponent

two-point correlation function

(p(X1)p(X2)) ~ e I1-%2l/8

for T > T; at large distances

CU ~ (T - Tc)_a
The specific heat diverges as
T—Tr

X = lim 1) (T—T.)~"

h—0 dh
The zero field susceptibility diverges as
T — T+

(response of the system to external field )

In the external field h, (¢(%)) ~ |h|1/?
exactlyatT = T.ash — 0

two-point correlation function

(P(R1)p(X2)) ~ |%1 — Fp| =21
exactly at T = T, at large distances

dynamical critical exponent z
CrxfasT — TF
with T as response time
(response of the system to
a time-dependent filed)

p ~(ge—8)F for < g &(g—8.)
=0 for ¢ > g

g~ (g—8)7"

equal-time connected correlation function

G(r) = {(9(0, t)¢(f,fz>r;: (@(0,1)){p(r, 1))

Co~(g—8c) "

as g — g

X~ (§—8)77

¢~ |gL]?
forgr —+ 0and g = g
with g7 as a longitudinal field

G(r) ~ |r| -2
atg = g

Gr~EF g —gc ™
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FIGURE 1.1: Phase diagram of a general quantum phase transition

(QPT).

can lead to a phase transition. Understanding the possible orders that characterize
these phases is of primary interest in current many-body physics.

The two classes of strongly correlated systems that interest us are heavy fermionic
(electronic) systems and one-dimensional spin—% systems in presence and absence of
disorder.

Heavy-electron materials are a subset of the intermetallic compounds containing
elements with localized electrons. Historically, the term Heavy-fermion was first
used by Steglich and his collaborators in the late 1970’s[6]. A heavy fermion metal
can develop electron masses (density of states) 1000 times bigger than copper. It
can also develop unconventional superconductivity, transform into new forms of
quantum order, exhibit quantum critical and topological behavior. In the periodic
table, the most strongly interacting electrons reside in orbitals that are well localized.
In order of increasing localization, partially filled orbitals are ordered as following[7,
8]

5d < 4d < 3d < 5f < 4f (1.4)
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In the present thesis, we select and study some of the collective phenomena in
the systems of many-body condensed matter physics which their components are
strongly correlated with each other. First, we introduce these phenomena and later
we give a short survey on these phases and systems.

1.2.1 Metal-insulator transitions

One interesting class of quantum phase transitions is metal-insulator transitions[9,
10]. They usually originates from two effects

e lattice effects for models of non-interacting electrons
e the interaction between electrons
At the metal-insulator transitions, the conductivity vanishes

an

a,u)D —0 (1.5)

o=

Two examples are the Anderson transition (Anderson localization) which is due to
lattice effects in a model of non-interacting electrons and Mott transitions which is
due to the interaction between electrons. In Anderson transitions, the electronic
charge diffusivity D is driven to zero by quenched disorder while in the Mott tran-
sition the thermodynamic density susceptibility dn/du vanishes. Note that a sharp
distinction between metal and insulator is possible only at T = 0.

Another metal-insulator transition which has recently attracted great attention
is the many-body localization (MBL) transition. This phenomena occurs for a closed
quantum system and is due to the presence of the interaction among electrons in the
Anderson localization [11].

In this thesis, we deal with several Metal-Insulator transitions in strongly cor-
related systems. Therefore in the following, we present a short introduction to the
above phenomena.

Mott transition

The band theory of solids provides a successful description of metals, insulators and
their transitions. After the discovery of quantum mechanics, physicists could give a
basic distinction between metals and insulators based on their band structures.

However in 1937, several simple transition-metal oxides with a partially filled
d-electron band were found to be insulators. In this class of materials, the strong
Coulomb repulsion between electrons (electron-electron interactions) is the source
of the unusual insulating behavior called Mott insulator [12, 13]. In other words,
under strong on-site interaction U, the original band will split into two bands with
energy gap U and due to this, the system will become an insulator.

The transition from a metal to an insulator due to strong electron-electron in-
teractions is called a Mott transition[14]. In this transition, the electronic state will
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change. In the vicinity of the Mott transition, a wide variety of interesting phenom-
ena, such as high-temperature superconductivity and large thermoelectric effects,
arise due to the interplay between charges, spins, and orbital degrees of freedom.

Before explaining the other two types of metal-insulator transitions, we give a
short introduction to some concepts that are required to underestand these transi-
tions.

1.2.2 Close quantum system

Consider a closed many-body quantum system with a short-ranged Hamiltonian
‘H, which means that the Hamiltonian is local in real space. Such a system can
consist of cold atoms, traped ions, photons, electrons, spins, qubits etc. The states of
such a system can be studied using density matrices. We work in the Schrodinger
representation, where the density operator p(t) evolves in time according to

p(t) = e p(0)e',
ihd‘;(:) — [H(1),p(1)], (L6)
Te{p} = 1.

One can compute the expectation value of an operator corresponding to an opera-
tor O as (O); = Tr {Op(t)}. The systems that we study are the quantum spin—1/2
systems which can be considered as a special case of general quantum two-state sys-
tems. Each spin is located at a point in real space which can be randomly located or
form a specific configuration. Such quantum spin system can be described by four
linearly independent operators. In the case of spin—1/2 systems these operatores
can be represented by 2 x 2 matrices: the identity matrix I; and the three Pauli ma-
trices o, 07, o for spin at site i. A general mixed state p; can be written as a linear
combination of these operators as will be mentioned in Eq. 4.29 in section 4.7. The
Hamiltonian of the system is a sum of local operators. The system may have some
other extensive conserved quantities that are also sums of local operators. Spin and
particle are examples for these conserved quantities. Such quantities can be trans-
ported by the systems dynamics such as the energy. these dynamics are governed
by the Hamiltonian of the system as shown Eq. 1.6. Two cases are very interesting

e time independent Hamiltonian H(f) = H
U(t) = exp(—iHt), (1.7)

with U(t) being the time evolution operator associated with the Hamiltonian
of the systems H.
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e Floquet systems (periodically driven systems) H(t) = H(t+ T) and one can
use the general definition of unitary time evolution to compute U (t)

U(t) = Te~ Jo HDar, (1.8)
where T is the time-ordering operator.

Note that the off-diagonal terms of the density matrix p(t) give rise to the system
dynamics in the eigenbasis of the Hamiltonian. In other words if the p(t) is one of
the eigenstates of the Hamiltonian, then the problem it trivial, because there is no
dynamics.

1.2.3 Non-equilibrium dynamics of isolated quantum systems

In recent years, physicists have tried to study the non-equilibrium dynamics of iso-
lated quantum systems. Theoretically and experimentally, it is challenging and it
causes many fundamental questions in the various areas of quantum mechanics. In
this thesis, non-equilibrium dynamics are investigated from a quantum quench per-
spective[15, 16]. Quantum quench provides a way to access the excited states of the
systems which are required to study a nonequilibrium problem. This perspective is
characterized by initializing the system in a state py = |¢9) (¢o|, which can be the
ground state of a local Hamiltonian. Then by sudden global change of the system
parameters and letting the state to be evolved in time by a unitary time evolution
under some local Hamiltonian H

(1)) = e ) . (1.9)

After the quench, the initial state changed to a different state at each time t with
different properties. The expectation value of observable A at a later time ¢ will be

(A(t)) = Tr(e " pge'' A) (1.10)

Non-equilibrium dynamics of closed quantum systems enable us to study and
discover different features of correlated systems in order to answer fundamental
questions which arise from it. There are several concepts in condensed matter and
statistical physics that one can use non-equilibrium dynamics to understand, for ex-
ample, thermalization, transport, entanglement, dynamics of quantum phase tran-
sition and so on. But in this thesis, we use quantum quench in the context of many-
body localizations and will visit and study the localized phase where it hosts an-
other interesting phase called spin-glass phase.

In the following, we explain some of the concepts that non-equilibrium dynamics
of a quantum system can enable us to study.
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1.2.4 Quantum thermalization

A usual quantum statistical mechanical assumption is that the system goes to ther-
mal equilibrium in the long time limit, i.e., ¢ — co. This (quantum) system in ther-
mal equilibrium is fully characterized by a small number of parameters (tempera-
ture, chemical potential, etc.: one parameter for each extensive conserved quantity),
suggesting that the process of going to thermal equilibrium is associated with the
erasure of the system’s memory of all other details about its initial state. This means
that one can wait long enough time such that the system is in thermal equilibrium
and then by usuing equilibrium statistical mechanics, study the behaviour of the
system without solving the dynamics. When such a situation happens the system
is a bath to itself and brings the subsystems to thermal equilibrium. However this
assumption is not true for MBL phases. This requires a more precise definition of
thermalization.

FIGURE 1.2: Statistical mechanics of a closed quantum system under-
going unitary time evolution. There is no external reservoir. It can be
useful to partition the closed quantum system into a S subsystem and
its environment. If the system quantum thermalizes, then S is able to
act as a bath for the subsystem S. S defined by a finite set of micro-
scopic degrees of freedom and the § is the rest of the system such that

ps(t) = Trs{p(t)}.

To define quantum thermalization, we consider the exact dynamic of the closed
quantum system which is given by unitary time evolution of the system

p(t) = U(t)p(O)U (1). (1.11)

The dynamics in Eq. 1.11 is reversible which means that any information that is
in the initial state is still present at time t but hidden. The full system does not
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forget about its initial state. Thus the state of the full system does not go to the one
of thermal equilibrium distributions and consequently does not thermalize. The
dynamics of the system in the basis of U’s eigenstates is trivial. The only thing that
happens is that each off-diagonal term of p picks up a phase

Pnn(t) = pnn(0)

. 1.12
Pnm(t) = el(q)n_%)f)n,m (0). (12

As the conclusion of this section one can say that thermalization is of subsystems
which means the system goes to thermal equilibrium for T — oo such that the state
of its subsystem goes to thermal equilibrium as it is shown in Fig. 1.2.

Now we can have a more precise definition of thermalization such that holds for
large number of systems as follows

For all subsystems S and all initial states p(0), we have

' (@) o~ B(H—uN+...)
lim ps(t) = pg "' (T, u, h,...) = Trg — | (1.13)
(e

where péeq) (T,u,h,...)is the state of the subsystem at thermal equilibrium which

can depend on temperature T, chemical potential y, field / and so on.

1.2.5 The Eigenstate Thermalization Hypothesis

According to the Eigenstate Thermalization Hypothesis (ETH), thermalization oc-
curs at the level of individual eigenstates of a given Hamiltonian, which means each
eigenstate of the Hamiltonian implicitly contains a thermal state[17, 18]. If we look
at one eigenstate of the Hamiltonian

H|Ey) = Eq|En), (1.14)

where E, is the thermal equilibrium energy corresponds to temperature T}, such
that E, = (H)r, is the expectation value of the Hamiltonian at the single eigenstate
|En). Imagine the full system is in this eigenstate, thus

_ (n) _
o =p" = |Ey)(Eul,
) (1.15)
Ps " = Trs{|En)(Enl},

where pg") is the state of the subsystem S. Based on the ETH, sub-system S is at

thermal equilibrium in the thermodynamic limit

o) = pl(T,). (1.16)
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The ETH can provide a new set of ensembles in quantum statistical mechanics,
namely the single-eigenstate ensemble, that each contains of a single eigenstate of
the full system Hamiltonian. When ETH holds then these ensembles all give the
correct thermal equilibrium characteristic of the subsystem. To describe this clearly,
consider a typical pure state, when it is restricted to a small subsystem, is well ap-
proximated by the microcanonical ensemble [19, 20, 21, 22]. In other words, for a
system contains of a sufficiently small subsystem S and its complement S, for any
random pure state ¥ from an energy shell (E, E + AE)

|¥) =Y _EulEn), Eu€ (E,E+AE), (1.17)

($)

the corresponding reduced density matrix py’ = Trg|¥)(¥| can be considered mi-
crocanonical with some approximation[22]. Now in the limit of very small energy
window AE — 0, this microcanoical ensemble reduces to a microcanonical ensem-
ble which consisting only one eigenstate and therefore single-eigenstate ensemble
and consquently we have Eq. (1.16).

1.2.6 Anderson localization

The study of the conductance of electrons is at the very heart of condensed-matter
physics. The classical Drude theory of electronic conductivity is based on the idea
of free electrons scattered by positive ions in metal lattice sites. A key concept in this
description is the mean free path, i.e., the average length an electron travels before
it collides with an ion. According to classical theory, the electronic conductivity
should be directly proportional to the mean free path, which experiment has shown
is large in metal (around 100 nm). This means that the mean free path can be several
orders of magnitude larger than the lattice constant.

Physicists had to wait for the discovery of quantum mechanics to understand
why electrons apparently do not scatter from ions that occupy regular lattice sites:
the wave character of an electron causes the electron to diffract from an ideal crystal.
Resistance appears only when electrons scatter from imperfections (disorder) in the
crystal. With the quantum mechanical revision, the Drude model can still be used,
but in the new picture an electron is considered as zigzagging between impurities
or disorder. The stronger the disorder, the smaller the mean free path and the lower
the conductivity. Increasing the disorder in a metal will eventually turn it to an insu-
lator in which the extended states of a metal become localized and the conductivity
vanishes. This will lead to the phenomena of disorder-induced spatial localization
of electrons or Anderson localization[23].

In 1958, Anderson considered the behaviour of electrons in a dirty crystal. This
is the quantum mechanical analogue of a random walk in a random environment.
Random potential produced by disorder in a lattice of correlated electrons can lead
to localization of electrons by disorder. The phenomena of Anderson localization
can be considered as one of the most fundamental disorder-related phenomenon.
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Fig. 1.3 explains the pictural representation of the phenomena of Anderson localiza-
tion.

diserdesld system
| .

locelited. stz with, Loclizadin busths $

ectonded ghte with, mean /?m pits L

FIGURE 1.3: pictural representation of the Anderson Localization: lo-
calization length ¢ and mean free path /.

Anderson considered the tight-binding approximation in which the electrons can
hop between atoms (lattice sites), and these electrons are subject to an external ran-
dom potential which models the random environment. As a consequence, in strong
enough disorder, such a system should lose all its conductivity properties and be-
come an insulator. This means that electrons in such a system are trapped due to
existence of disorder which is in contrast to the behaviour in ideal crystals which
are conductors.

As we mentioned above, the model that explain Anderson localization, is a tight-
binding model of a single quantum particle (electron) hopping on an infinite lattice
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with Hamiltonian

H=t) (cfcj+ c}ci) +Y Uiclc, (1.18)
(i.f) i

where Uj; is a static random onsite potential, ¢ is the hopping parameter between
nearest-neighbor sites. c! is creation operator for the particle at site i. For weak-
disorder, the eigenstate of this Hamiltonian can be extended over all the sites and
particle shows diffusive dynamics. For strong eough disorder, the particle’s wave-
function get localized and it will be characterize by an exponentially decaying func-

tion as

[Yu(7)] ~ exp(|7 =7l /E) (1.19)

where ¢ is the localization length which is dependent on the disorder strength and
the energy. This means that the state of a of the particle is localized around the
position 7. In other words the electronic wave function 1 (7) will have interference
with itself such that it will be confined to a small part of the solid and subsequentally
the state of the matter is an insulator and does not conduct. In one dimension an
arbitrary weak disorder localizes all states[10].

The phenomenta of the Anderson localization can manifest in different systems
of correlated fermions. For instance in the Falicov-Kimball model which explains a
system of heavy-fermion compounds where the f-electrons hybridize with the con-
duction electrons. The effective masses of the resulting quasiparticles can reach a
thousand times the mass of the bare electron and due to this reason the f-electrons
can be seen as frozen particles which don’t have any dynamics and random distri-
bution of them can produce a random potential for the c-electrons and the result can
be localization of the c-electrons.

1.2.7 Many-body localization

For an isolated quantum system, Anderson localization in the presence of the inter-
action among particles (electron-electron interaction) will reach to the phenomena
of Many-Body Localization(MBL)[11], i.e., one can look at it as an extension of sin-
gle particle Anderson localization to interacting systems. In other words, MBL is a
phenomena which arises from presence of both disorder and iteractions among con-
stitued particles. The interplay between these two key ingredients addresses several
fundamental questions on how a quantum system thermalizes or fails to. It is of very
fundamental interest to both many-body quantum physics and statistical mechan-
ics. MBL transition is a quantum phase transition between a localized and extended
(ergodic) phase which happens at nonzero temperatures. It is a quantum glass tran-
sition where equilibrium quantum statistical mechanics breaks down. In the local-
ized phase the system fails to thermally equilibrate[24]. Recent experiements on
ultra-cold atoms and trapped ions enable physicists to investigate experimentally
the non-equilibrium dynamics.
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In this thesis we are interested in MBL in the context of spin models which is
more simple. Similar the more familiar ground-state quantum phase transitions,
this transition is a sharp change in the properties of the many-body eigenstates of the
Hamiltonian[24, 25, 26]. The distinctions between the two phases all are due to dif-
ferences in the properties of the many-body eigenstates of the Hamiltonian, which
of course enter in determining the dynamics of the isolated system. In the ergodic
phase, the many-body eigenstates are thermal. This means the isolated quantum
system can relax to thermal equilibrium under the dynamics due to its Hamilto-
nian. In the thermodynamic limit (L — o0), the system thus successfully serves as
its own heat bath in the ergodic phase. In a thermal eigenstate, the reduced density
operator of a finite subsystem converges to the equilibrium thermal distribution for
L — oo. Thus the entanglement entropy between a finite subsystem and the remain-
der of the system is, for L — oo, the thermal equilibrium entropy of the subsystem.
At nonzero temperature, this entanglement entropy is extensive, proportional to the
number of degrees of freedom in the subsystem. In the many-body localized phase
, on the other hand, the many-body eigenstates are not thermal[11], i.e., ETH is
false in the localized phase[27, 17, 18, 28]. Thus in the localized phase, the isolated
quantum system does not relax to thermal equilibrium under the dynamics of its
Hamiltonian. The infinite system fails to be a heat bath that can equilibrate itself.
It is a glass whose local configurations at all times are set by the initial conditions.
In the present thesis we are interested in the localized side of the transition where
it hosts MBL spin-glass phase. In the recent years there have been many studies on
MBL phase transition in both side of the transition. We can summarize both sides of
the transition in the table 1.2.

1.3 Entanglement

One of the central principles of quantum mechanics is entanglement. During last
years, Entanglement plays a central role in quantum many-body theory. Exotic
quantum phases such as spin liquids [29, 30], topological [31, 32], or many-body
localized systems [33, 34, 35, 36] find their characterization in their entanglement
properties. Moreover, quantum phase transitions are signaled by a universal en-
tanglement contribution determined solely by the universality class of the transi-
tion [2, 37, 38, 39, 40]. This can be used to detect quantum phase transitions without
prior knowledge on the nature of the transition [41], e.g., the order parameter, since
entanglement is a general system-independent quantity. In the ongoing efforts to
characterize quantum many-body systems via their entanglement properties, the
entanglement entropy, measuring the entanglement between a subsystem and its
remainder, is taking over a key role. However, a major limitation of the entangle-
ment entropy is that it is a valid entanglement measure only for pure states. This is
a particular challenge in view of experiments where thermal excitations or other im-
perfections leading to mixed states are generally unavoidable. Nevertheless, recent
works on quantum simulators have demonstrated that entanglement in quantum
many-body systems can be accessible in experiments. In systems of trapped ions,
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TABLE 1.2: properties of the two phase, i.e., ergodic or thermal and
MBL phase[26].

Ergodic phase

MBL phase

Memory of initial conditions hidden
in global operators at long times

Metal:
tinite DC conductivity

Entanglement spreads fast S() o t

Some memory of local initial conditions

preserved in local observables at long times

No transport:
Zero DC conductivity,
even at infinite temperature

Entanglement spreads,
but slowly S(t) o log(t)

Ergodic states

MBL states

Follow ETH

Observables are the same
within the same energy shell

Random matrix statistics

Eigenstates occupy all configuration
space

Entanglement entropy of eigenstates
is extensive, i.e., Volume Law for
entanglement

Violate statistical Mechanics

Observables differ from
eigenstate to eigenstate

Integrable (Poisson) statistics

No delocalization

Area law for entanglement
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full-state tomography provides access to various entanglement measures [42, 43, 44,
45, 46, 47]. In ultra-cold atoms it is possible to measure Renyi entropies [48] as also
demonstrated in experiments [49, 50]. Recent theoretical works have outlined new
approaches for measuring entanglement using unitary n-designs [51, 52] or machine
learning techniques [53].

1.4 Outline of the thesis

In this thesis we deal with the phenomena that we have mentioned above. We aim
to address different problems and study them in some special cases using different
numerical techniques. For such a systems, analytical solutions only exist for very
special setups or weak and strong coupling limits. Semi-analytical infinite partial
summation techniques [54] can be applied but are in general uncontrolled. Approx-
imate numerical approaches are known to yield inaccurate critical behavior in two
and three dimensions [55, 56]. Therefore, large-scale numerical efforts, e.g., diag-
onalization, lattice quantum Monte Carlo, large diagrammatic simulations, tensor
network methods(DMRG, TEBD, MERA,...) or machine learning techniques are re-
quired to lead us to a better understanding of these models[57, 58, 59, 60, 61, 62, 63,
64].

The structure of present thesis is as follows: in chapter 2 we introduce the nu-
merical techniques that we have used in the thesis for different problems. It starts
with a brief introduction to Exact diagonalization methods. Afterwards we introduce
our lattice monte carlo method based on metropolis algororithm to sample the dif-
ferent configurations in a lattice of fermionic systems and in last part of the chapter
2, we introduce the TEBD algorithm for spin chains based on matrix product states
representation for both pure and mixed state (nonzero temperatures).

In chapter 3, we ain to study a heavy fermionic system and especially investigate
the interplay between frozen f-electrons and conduction c-electrons. For this we re-
visit the phase diagram of finite temperature phase diagram of the two-dimensional
Falicov-Kimball model at half-filling using state-of-the-art Lattice Monte Carlo tech-
niques. We show that this model at particle-hole symmetry possesses three distinct
thermodynamic insulating phases and exhibits Anderson localization. The previ-
ously reported metallic phase is identified as a finite-size feature due to the pres-
ence of weak localization. We characterize these phases by their electronic density
of states, staggered occupation, conductivity, and the generalized inverse participa-
tion ratio. The implications of our findings for other strongly correlated systems
will be discussed.

In chapter 4, we aim to map out the spatial entanglement structure of a low-
dimensional quantum system, the transverse-field Ising chain, both in the ground
state and in thermal states using Time-Evolving Block Decimation (TEBD). For this
purpose we use the logarithmic negativity in order to obtain information about the
spatial entanglement structure of two disjoint blocks of identical size £. We show
that for any fixed size ¢ of the two blocks there exists an entanglement threshold
at a distance d* beyond which the logarithmic negativity vanishes identically and
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the two blocks become unentangled. This holds remarkably across the whole phase
diagram of the system including also the quantum critical point where the system
exhibits long-ranged quantum correlations. We study this entanglement threshod
d* as a function of the system parameters and temperatures.

In chapter 5, we study a specific phase inside MBL regime called MBL spin-glass
phase which is challenging to detect dynamically and therefore experimentally. Us-
ing two-point reduced density matrices, we construct an eigenstate spin-glass order
parameter to detect the MBL spin-glass order. We find that this eigenstate spin-glass
order parameter captures spin-glass phases in random Ising chains both in many-
body eigenstates as well as in the nonequilibrium dynamics from a local in time
measurement.
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Chapter 2

Numerical Techniques

The aim of this chapter is to provide an introduction to methods and techniques
used in the numerical solution of the problems that interest us.

2.1 Exact diagonalization

The phrase exact diagonalization (ED) is a broader term and generally refers to
methods which construct the basis of a given system explicitly. While the actual
form of this basis can vary between methods the general scheme is to set up the
Hamiltonian of the system under study explicitly and carry out calculations. In this
thesis we use ED to solve the systems composed of spins on a 1D chain. In particular
we use ED to compute the the eigenvalues and eigenvectors of the Hamiltonian of
interest.

Two models that are frequently used as spin systems, are the XXZ model and
Transverse field Ising Model. Both describe system of spins where each spin inter-
acts with other spins through coupling coefficients that can be nearest-neighbor or
other types. The Hamiltonians that describe these models in 1D are: Transverse field
Ising model

. 1 (L= L-1 L
=3 (Z Jooioi + Y Jxof ol + ) _hoi |, (2.1)
i i i

where J, is the nearest-neighbour coupling and h, is the transverse field and J, is
the coupling in th_e x-direction which when it has nonzero value, makes the model
nonintegrable. (Tl.n_x’y “ are the Pauli matrices with

01 0 i 1 0
af:(l O)’ ol = (—i 0), Uf:(o _1). (2.2)

For the XXZ model, the hamiltonian is

L
Z (S¥Sf, +Sis! ) +2AS SHEE DI (2.3)
1

i
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where | is the coupling and A is the anisotropy parameter. For A = 1.0, Eq. 2.3
n=x,y,z h n=x,y,z
i =50

The size of Hilbert space asscociated to each Hamiltonian is D = d* local Hilbert
space has the dimension d = 2 refers to the direction of each spin, i.e., 0; = |1) or |])
in the 0* basis. Note that the basis {|1),|])} also called computational basis. The
task of diagonalization of the Hamiltonian becomes to write down the Hamiltonian
of the system in the computational basis.

becomes the Heisenberg model. Note that S

- Z HZ}:;? o1, ..., 05 .con){o,...,00,...01], (2.4)
OpyeesTien O, preemirerL
01 yeef07 0
where
Hg%gigz =(01,...,04,...00|H|0oq,...,00,...01) (2.5)

For this, one should compute each part of the Hamiltonian accurately such that it
captures the effect of each site i in the Hamiltonian. For that we need to know the
matrix representation of each pauli spin operator S?_x’y *“ at each site i. The matrix

definition for each [Tf:x’y “ina D = d’ space s
oV =bh®.. 0L RLR...Q L. (2.6)
dL‘xrdL

This means the Hilbert space of a many-particle system is given by the tensor prod-
uct of the single-particle Hilbert spaces. By using relation 2.6, we can construct the
Hamiltonian matrix of the system, Eq. 2.5, and access its eigenvalues and eigenvec-
tors.

2.2 Lattice Monte Carlo Method

The Monte Carlo method was first developed at Los Alamos during the WWII Man-
hattan project for the purposes of modeling neutron trajectories during fission. Since
that time, the Monte Carlo method has undergone enormous developments and has
been numerously applied in virtually every area of science and engineering. Intrin-
sically as a computationally very demanding method, the Monte Carlo method has
naturally become more popular as computers have become faster, less expensive
and more accessible.

Originally Lattice Monte Carlo (LMC) was developed for addressing multi-scale
phenomenological diffusion problems [65, 66]. In this LMC method, the phenomeno-
logical diffusion problem is mapped onto a simple cubic (usually) lattice which is
then explored by virtual particles. Depending on the physics of the problem con-
sidered, the virtual particles correspond to a fixed amount of matter (mass diffusion
analysis), thermal energy (thermal diffusion analysis) or even elastic deformation
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energy (elastic analysis)[67]. In the LMC method, geometries are discretized as lat-
tice models. In principle, any topology of lattice can be chosen, for reasons of sim-
plicity normally a primitive cubic arrangement is selected.

Aim of this section is to have a brief overview on the LMC method for the
Falikov-Kimball Model (FKM) which will be focused in details in chapter 3. Our
LMC method is based on classical Monte Carlo or more specifically Markov Chain
Monte Carlo (MCMC) method—which was invented soon after ordinary Monte
Carlo at Los Alamos—and consequently using the Metropolis algorithm to sample
all configurations which the lattice can possess.

2.2.1 Markov Chain Monte Carlo

Before we explain (MCMC), lets have a short overview on Markov chains.

Markov Chains

A sequence X, X, ... of random elements of some set is a Markov chain if the con-
ditional distribution of X; 1 given X3, ..., X;, only depends on X;. The set in which
the X; take values is called the state space of the Markov chain and follows an evo-
lution law. Note that the index t can be viewed as a kind of discrete time.

People introduced to Markov chains through a typical course on stochastic pro-
cesses have usually only seen examples where the state space is finite or countable.
If the state space is finite, written {x1,...,x,}, then the initial distribution can be
associated with a vector A = (Aq,...,A,) defined by

Pt(x,-) = P(Xt = x,-) =A; 1=1,...,1t, (2.7)

as the probability to find the value X; for the random variable in the Markov chain
at "time" t.

The transition probabilities can be associated with a matrix P having elements
pijand 0 < p; ; <1, defined by

P(Xt—i—l :x]- | Xt:xl-) :pij/ i:1,...,t & jZl,...,t. (28)
and

EP(xi — x]) = 1,

Xi

note that the sum can be replaced by an integral if the variables are continuous.
Now one must have

'PH_l(X]') = ZPt(xi)P(Xt+1 = Xj | X¢ = x;) (2.9)
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A Markov chain has stationary transition probabilities (detailed balance condition)
if the conditional distribution of X;; given X; does not depend on t.

Pr(xj)P(Xev1 = xi | Xe = x7) = Pe(x) P(Xe1 = xj | Xe = x7) (2.10)

This condition expresses the fact that in the evolution the flow of probability
going from x; to x; is compensated by the opposite flow. This let us expect that a
steady state can easily be reached by such Markov chains. This is the main kind of
Markov chain of interest in MCMC. So we will restrict to this kind of class of Markov
chains.

Metropolis Algorithm

In 1953, Metropolis and colleagues (including Edward Teller) simulated a liquid in
equilibrium with its gas phase. The obvious way to find out about the thermody-
namic equilibrium is to simulate the dynamics of the system, and let it run until it
reaches equilibrium. They realized that they did not need to simulate the exact dy-
namics; they only needed to simulate some Markov chain having the same equilib-
rium distribution. Simulations following the scheme of Metropolis et al. (1953) are
said to use the Metropolis algorithm. As computers became more widely available,
the Metropolis algorithm was widely used by chemists and physicists. A gener-
alized form of the Metropolis algorithm, called the Metropolis—-Hastings algorithm
which uses the Gibbs sampler to sample each configuration of the system depend-
ing on the system parameters. For the FKM we use Metropolis—-Hastings algorithm
and sample its configurations by Gibbs sampler.

2.2.2 Lattice Monte Carlo for Falikov-Kimball Model

FKM is a system of correlated electrons which describes the interplay between two
types of electrons: conduction c-electrons and the f-electrons which are fixed and
localized particles, distributed over the lattice and form a specific configuration. We
consider FKM in a square lattice. Depending on whether the site i in the lattice is
occupied or not, the associated occupation number 7;  is 1 or 0 respectively, see
Fig. 3.2 and Sec. 3.2 for more details. This feature of f-electrons provides the necce-
sary conditions to use MCMC. We can update the configuration of the system from
one to another by only changing the n; ; in each site i in the lattice. therefore one
can apply the Metropolis algorithm on the FKM by using Gibbs sampling for each
configuration.

For applying the Metropolis algorithm to FKM, let us for example calculate the
expectation value of the Hermitian operator (observable) O from the model. If we
want to calculate this expectation value, i.e., (O), exactly, we must sum over 2-<F
different configurations. Computationally, this process costs huge time and is al-
most impossible. With the metropolis algorithm we can just construct a Markov
chain based on the model and sample each configuration and let the model to wan-
der around reasonable numbers of configuration.
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We denote the statistical weight associated to each configuration as W({n¢})
which corresponds to the probablity of system being at specific configuration {n}.
By knowing W ({ny}), one can apply metropolis algorithm as follow

1. Initialize model in configuration {rny}, this configuration has the statistical
weight W({n¢}).

2. Pick a site i randomly and propose a move by flipping its occupation num-
ber n; ¢ from 0 to 1 or vice versa and call this new configuration {n}} with

statistical weight W({n}} ).

3. Now the process of accepting or rejecting of this movement is as follow:

W /
o if P = WE}Z}{ B > 1, accept the move and the system transits to a new
configuration {n}}

o if P = %Z’;B < 1 then select a random number 0 < p < landif P > p

we accept the move, otherwise not.

4. if it is required to reduce the correlation between configurations, repeat steps
2 and 3.

5. Calculate the value of the observable O for possessed configuration which can
be either {ny} or {n}}

6. Repeat 2 to 5.

One has to repeate the above steps until the system reaches the equilibrium distri-
bution and the intended observable (O) converges to its final value.

2.2.3 Error analysis and estimators

After N Monte Carlo cycle (Metropolis algorithm) we have N measurements of ob-
servable O which can be expressed as time series of N measurements of a observable
O. At this point one can introduce the concept of estimator for the expectation value
(O) to estimate this quantity as physical output of Monte Carlo simulation, therefore
one can calculate the arithmetic mean value of O

) 1%
O=—-_Y 0 (2.11)
N = I

We should be aware about the difference between (O) which is an ordinary number
and O is a fluctuating number with variance

03 = ([0 —(0)) = (0%) — (O)* (2.12)
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Depending on the measurements that we do, we have two type of measurements:
uncorrelated and correlated measurements.

Uncorrelated measurements

When there is no correlations between the measurements or in other words, the
measurements are independent, for variance we have

05 = o-gj /N (2.13)

where 03 = (OJZ) — (0j)? is the variance for single measurement. Note that this
]

quantity becomes important when it refers to physical quantities. For example if
one consider O as mean energy then this variance for single measurement would be
specific heat C,.

Correlated measurements

One should also consider the correlation between measurements by an additional
tactor which comes from it

N
% = (0%) (0 = (L (100) = (0)(0))
ij=
N
— (L0 (02) @14
i=1
1 N
+ m(;(@ioﬁ —(01)(0})))
i#]
Now (7(25 can be reformulated as follow
2
05 = %(1 +2710) (2.15)

that is written as naive variance multiply by factor (1 4+ 27p)/N which includes
auto-correlation time which has definition as

_ Y1 ((0i0;4) — (01)(O1)

0 (2.16)
(02) — (0:)(01)
and its asymptotic behavior when k — co will be
To — ae KT (2.17)

where 7 is exponential auto-correlation time and in general 7o # 7.
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FIGURE 2.1: Binning analysis. Each row represents the datas at each
binning length /

Remark the error for quantity O will be AO = /(7(2j

Binning analysis

In the binning analysis' one divides the N data to & blocks such that each block

includes 2 datas point then average on each block , number of & data will be pro-
duced. By repeating this process, one can estimate the correct error. See Fig. 2.1.

1 _ _
of! =~ Loyt + o) @

where [ is the binning length. For each binning length [ we have

(1) — /% _
A o (2.19)
and
2
AD = A 14 2@%’ (2.20)

!Note that there are other error analysises that we don’t describe here, for example Jacknife anal-
ysis
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with exponential auto-correlation time

To = lim —( el

e 2 G20 -1 22D

2.3 Tensor Networks Methods

What makes quantum mechanics fundamentally different from classical physics is
the different nature of the states: whereas they are points in phase space in classi-
cal physics, they are rays in Hilbert space in quantum mechanics. Tensor network
methods have become very popular during last years to simulate strongly correlated
systems. One of the famous example of these methods is Density Matrix Renormal-
ization Groups (DMRG). In this part of the thesis, we give a short introduction to
those methods that we have used in the thesis. Here we explain Matrix Product
States representation, Time-Evolving Block Decimation and finite temperature Ma-
trix Product States representation.

2.3.1 Matrix Product States

Consider an arbitrary quantum system composed of L local Hilbert space {c;} each

of dimension d. This for example can be interacting spin—i where the local states

are |1), |{) and d = 2. For one-dimensional chain with sites 1 through to L, its pure
states are then defined on the L¢-dimensional Hilbert space

H=xF H, (2.22)

where H; is the local Hamiltonian on site i. Now the most general state of such
Hamiltonian reads

)= Y oo 01000 (2.23)

(VYU 4

To be efficinet we use often abbreviation {c} = 07,...0j,...01. The usual problem
of numerical simulations is that the number of state coefficients ¢, grows expo-
nentially with system size L.

Matrix Product states (MPS) is a clever way to represent a quantum state |¢)
systematically. Using singular value decomposition to decompose the coefficient

Coy,..,0;,...,00» ONE CAN re-express them as [202]
0 1 ) j L
€Oy O = 2 A'Eéo} Fﬂg)lﬂil)‘lgél] T Fﬂgqﬂéi)‘g} ce FD(‘TLL—laL)\‘E‘L}’ (2.24)
01,0 es0 e, 0L .

Kp... . K]
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and the state |¢) becomes

0 1 : ' L
wy = Y Alra A e AL Ay e e, 225)
01yee/050- 0,0,
Np... 0. K]

where the 0;’s are physical and «’s are auxiliary indices. Each I} ,. is a rank-
3 tensor, which therefore depends on the local state |0;). Note that indices a; 4
and «; refer to the bond dimension on site i and sums over them run from 1 to its
maximum value at each bond, X.x With ag = a1 = 1. Xmax either can be chosen to
be fixed during the calculations or one can let to changed dynamically based how
many states are considered to be kept. Each A,[Xll] is a vector of size «; that contains
the singular values at bond i. They contain information related to entanglement
spectrum. In Eq. 2.24, the coefficient c(, is written as sum over product of local
tensors "% and local vectors All. For an infinite chain all I Dgi—l/“i,s and /\,[le]’s are the
same through the chain. Note that any quantum state can be represented as an
MPS, although the representation may be numerically inefficient. Nevertheless, it is
therefore a mathematical structure of general interest.

In our MPS representation of this thesis, as is shown in Fig. 2.2 we use the fol-

lowing representation

Wy =Y T Ty - Tiklov...op...0n), (2.26)
L

061.....02[‘,1
with each T;ZLW =T, ,fiil mi/\,gf} and they obey the right-canonical condition

Y 1o =1, (2.27)

Oi

and T, , ,, are called right-normalized tensors.

T

Q1,04

Oéz'—1—?— %
0;

FIGURE 2.2: MPS form for a pure state |¢).

)
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2.3.2 Time-Evolving Block Decimation

Traditionally, the exposition of DMRG starts with explaining the ground state al-
gorithm, DMRG proper, which for a given Hamiltonian H looks for its ground
state within MPS representation. This reflects the historical course of events: time-
dependent DMRG [4-6, 8] (with the variants of TEBD and tMPS, but this is all very
much the same) was invented later on after ground state DMRG. In this thesis we
use Time-Evolving Block Decimation (TEBD) algorithm to access both ground state
and real time evolved state of the given Hamiltonin H using imaginary and real
time evolution repectively.

The TEBD is an algorithm that generates efficiently an approximation to the time
evolution of a one-dimensional system subject, in this thesis, to a nearest-neighbor
Hamiltonian. TEBD is essentially a combination of an MPS description for a one-
dimensional quantum system and an algorithm that applies two-site gates that are
necessary to implement a Suzuki-Trotter time evolution. We restrict our attention
to time-independent Hamiltonians H; this captures a large number of the problems
encountered in practice. As all more important time-evolution schemes currently in
use consider small ("infinitesimal") time steps, time-dependent Hamiltonians can be
modeled by a sequence of Hamiltonians that change after each small time step.

Real-Time Evolution

Assume we have an initial state |((0)) in MPS form; such a state can be constructed
by hand (in simple cases like a Néel state, which is just a D = 1 MPS) or is obtained
by some other MPS calculation, e.g., as the ground state of some (other) Hamilto-
nian (otherwise there would be no non-trivial dynamics) — this is the typical setup
in ultra cold atom experiments where nonequilibrium dynamics is generated by
Hamiltonian quenches, i.e., abrupt changes in Hamiltonian parameters. In the case
of coherent evolution, the state at time ¢ is given by

() = U(t) [9(0)) = e~ ™ |y(0)) (2.28)

Imaginary-Time Evolution

To calculate the ground state of a given Hamiltonian using TEBD, one can use imgi-
nary time evolution. Quite generally, starting from a random state |¢) = Y, ¢, |1),
with eigenstates H |n) = E, |n), with Eg < E; < E; < ..., then we have

T—r00 T—00 T—00

[YGs) = lim U(7) |y) = lim e~ |p) = lim Y e "Frc,, [n)

— : 7TEO 7T(En7E()) — : 7TE()
lim e™"0(co [0) +r§)€ cn|m)) = lim e”"¢ |0), (2.29)

where T represents an imaginary time.
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Suzuki-Trotter Decomposition

The Hamiltonian that we are working with, have the nearest-neighbor structure.
This leads to the fact the total Hamiltonian can be split into two terms Heye, and
H, 44 called bond operators, each are the sum over all even and odd (respectively)
terms of the Hamiltonian. They commute if they do not share a site.

H = Hygqg + Heven; H cuen = Y i, (2.30)
i

even
(0odd)

where h; ;.1 are the bond operator at site i. Note that all terms within Heven (Hpgq)
commute with each other, incurring no error while applying an operator of the form
exp(aHepen ) (exp(aH,g4)) and (a € C). The corresponding time evolution operators
read as

e—i’Hf ~ e—iHevente_iHoddt; eXp(—ZHevent H e lh”'Ht H Ul(t), (231)

EUET[ even

(0odd) (0odd)

The TEBD algorithm relies on the Suzuki-Trotter decomposition[68] of the time-
evolution operator U(t), for this one first needs to decompose the U(t) into N small
time steps dt, i.e., U(t) = [U(dt = t/N)]" where N is a large enough that the time
interval dt = t/N is small compared to any internal time scale of the system.

The first and second order Suzuki-Trotter decomposition are as following

udt) = [Tuiat) [T ui(dt) +0(a#), (2.32)
o;ld evlen
]‘[u ]‘[ U;(dt) Hu )+ O(dr?), (2.33)
odd even odd

Two-site gate

After using Suzuki-Trotter decomposition, to evolve the state from t to t + Jt, one
needs to apply each gate U;(dt) succeively on all sites. For that one needs to use the
tensor representation of U;(dt) at each time step. In other words, due to the nature
of local Hamiltonian between site i and i 4 1, one can write U;(4t) in the form of the

0;,0,
rank-4 tensor @ i1

Uz Ul+1

@2?: = (07,0141 |Ui(6t) |0}, 07 1) (2.34)

After this, one can apply this operator locally on sites i and i + 1 in the MPS form
and proceed further. The pictural representation of the second-order Suzuki-Trotter
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MO S 8000000000000 0000R0A00
oM

[9(t + 6t))

U (5t)2) = U (5t) =

FIGURE 2.3: TEBD algorithm. Second order Suzuki-Trotter has been

used. It includes three applications of the gates. First and third evolv-

ing is for odd sites with time step 6t /2 and in the middle time evolution
of even sites with time step dt

decomposition to evolve the state of the system from |(t)) to [(t + Jt)) is shown
in Fig. 2.3.

Sources of error in Time-Evolving Block Decimation

During a TEBD simulation, the two main error sources are the Trotter and the trun-
cation error.

A decomposition to order p introduces an error of order €5; = (6t)Pl. The
error incurred in one time step in general scales linearly with the system size L.
This is due to the commutator relations occurring in the error term of the Suzuki-
Trotter decomposition as can be seen when applying the Baker-Campbell-Hausdorff
formula. Since the number of time steps taken is the total time ¢ divided by the
number of time steps ¢/Jt, the total Trotter error is of order O((ot)PLt)[69, 70].

The second considered error source is the truncation error. It originates from the
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truncation of the Schmidt values during the application of a two-site gate. Employ-
ing the Schmidt decomposition, a bipartite state can be written
Xmax

)= 3 it ) [of)+ YAt [er)

i:XmaxJFl (235)
= |1Ptrun6> + |¢discard> ’

where the left sum until x,.x denotes the kept part |unc) and the right sum start-
ing from Xax + 1 denotes the discarded part | 4iscarg). Due to the fact that \1/)L> and
|R) are mutually orthogonal then one can infer that the discarded part is orthogo-
nal to the truncated part.

X
<¢trunc|lptrunc> =1- Z /\12 =1—-w, (2.36)
i:Xmaerl
where w is the discarded weight
X
w= Y AL (2.37)
i:anax+1

Thus during the renormalizing |sunc) We pick up a factor of 1/(1 — w). After
n; truncations we are off by a factor of order (1 — w)™. For a chain of size L after

(L—1)t

total time ¢ with time step 6t number of truncation will be n; ~ 57 and thus
the truncation error is
L— L—1)t
etmme = (1 — w)" 7" = exp (% In(1 — w)) (2.38)

Thus we end up with a careful balancing of the two errors, depending on the size of
the time step Jt. For smaller 6t we have a smaller truncation error. Yet this requires
more truncations due to the larger number of time steps taken and thus in a larger
truncation error.

2.3.3 Finite Temperature Matrix Product States

So far we explained the MPS formalism for pure states. If one considers the scenario
for thermal (mixed) states we can not use the same formalism for them. The aim of
this part is to describe the situation for the thermal states. Strongly correlated quan-
tum many-body systems at finite temperatures can be simulated by matrix product
purifications. This means one needs to purify the thermal density matrix of a many
body system using auxiliary degrees of freedom. This can be done by partial trace
over a pure state |¥7) living in an enlarged Hilbert space where auxiliary degrees
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of freedom {77 .. 0L} € Qof spm—— for each lattice site in the MPS representa-
tion[71] encodes the thermal bath

e PH

For infinite temperature T = oo for each site i one can choose

[¥heo) = 5 (1o =2 =4) = los =4, =1)), 2.40)

which yields the full density matrix

1 1 L . .
Pp=0 = Zoss =51 = Trg|¥eo) (Yool = Trg | 1| ¥p—0) (Pp—ol, (2.41)
= 1=

the thermal state |¢5) can be obtained from [¢s—() with imaginary time evolution,

) = e PH/2|ypg_o). (2.42)

In this way one can compute the thermal density matrix by tracing out the auxiliary
degrees of freedom as pg = Trg|g) (|- The MPS representation of thermal states
can be constructed as for pure states but with an extra index ¢; for auxiliary Hilbert
space for each site.

[¥p) = Z T T,

UL
061...D£L 1

TD(LL f|0’151...0’i5'i...0L(7'L>, (2.43)

T g;

a4 1,04

FIGURE 2.4: MPS form for thermal state |¢) with auxiliary degrees of
freedom 7;.
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To cool down the system from B = 0 to the desired temperature 8 using imagi-
nary time evolution, one needs to evolve the physical indices ¢; related to the each
site in the chain. In the real time evolution, then the auxiliary degrees of freedom
helps to minimize the growth of the entanglement by evolving them backward in
time[71].

|pp(t)) = Uo(HU(t) [$p(0)) (2.44)

with Ug(t) = exp(+iHt) the time evolution operator backwrd in time for auxiliary
indecies Q with H = H(o; — ;) and U(t) = exp(—iHt) as time evolution operator.
This helps to reach to longer time during time evolution and thus one can reduce
the numerical cost of the calculations.
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Chapter 3

Interaction tuned Anderson versus
Mott Insulator

A Fermi liquid becomes unstable in the presence of strong disorder or Coulomb
repulsion. Although this has been known for a long time, the interplay of disorder
and electron-electron interaction near the metal-insulator transition is still at the
forefront of condensed matter research [72, 73]. This is at least in part due to the
lack of general techniques to tackle strong electron interactions in the presence of
disorder in higher-dimensional systems.

As is well known, a metal is a good electrical and thermal conductor, as defined
by a non-vanishing value of the DC conductivity. An insulator can therefore be
defined as a system for which this quantity vanishes.

In systems where the electron-electron interaction can be neglected, two types of
insulators, i.e. band insulators and Anderson insulators, can exist. In the presence
of interactions, the situation is richer, as e.g. Mott insulators, excitonic insulators, or
even Wigner crystals may form. Under the special condition of perfect nesting, an
ordered band insulator-like state is also possible as a result of an electronic phase
transition.

Following the seminal work of Basko et al. [73], the many-body localized state,
i.e. the insulating state that has its origin in the interplay of disorder and interaction,
has recently received increased attention [25, 74].

Typically, the term disorder is understood as being synonymous to quenched
disorder, e.g. when random variables are assumed not to evolve with time. The av-
erage over the disorder is taken to mimic the spatial self-averaging of the system.
This is in contrast to the annealed disorder where the disorder follows a thermal
distribution. When (quantum) dynamics is neglected the partition function of any
system can appear as that of an annealed disorder problem. In systems where a sep-
aration of time scales permits this neglect for the slow fields, occurrence of a local-
ization without explicit disorder may be possible [75, 76, 77, 78]. Only at sufficiently
high temperature, where every configuration carries essentially the same thermal
weight, the difference between quenched and annealed disorder is immaterial.
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3.1 Phase Diagram

In this chapter we revisit the finite temperature phase diagram of the two-dimensional
FKM at half-filling using state-of-the-art Lattice Monte Carlo techniques. The main
results are summarized in Fig. 3.1 that shows the phase diagram of the particle-hole
symmetric FKM in the interaction U - temperature T plane. By analyzing different
observables of the mobile electrons we found multiple different regions with quali-
tatively distinct properties:

e A charge density wave (CDW) at low temperatures
at high temperature:

e large U Mott-like insulator (MI) phase
¢ a non-interacting Fermi gas (FG) at U = 0

e a central result of the chapter, a region overlooked in previous studies [79]
where weak localization (WL) induces a finite-volume crossover between a
bad-metal (see below) and an Anderson-insulator (Al).

3.2 Falicov-Kimball Model

The Falicov-Kimball model (FKM) [80] is one of the simplest lattice models of in-
teracting electrons. It was originally developed to describe the metal-insulator tran-
sition in the context of f-electron systems and can be understood as a limiting case
of the Hubbard model where the dynamics of one of the spin-degenerate fermion
species is neglected. Thus, these fermions become immobile. Therefore, the par-
tition function of the FK model can be seen as one of annealed disorder of local
f-electron occupation numbers, allowing for the possibility to observe the Ander-
son localization in the absence of explicit disorder. At half-filling, the FK model
describes a charge-ordered state below some U-dependent transition temperature
T.(U) at all non-vanishing values of the interaction strength U between localized
and itinerant electrons [81, 82, 79, 83]. This charge-ordered state is commonly re-
ferred to as a charge-density wave (CDW) state. Within the standard approach to
strongly correlated electron systems, i.e. the dynamical mean field theory (DMFT),
the resulting effective impurity action, associated with the FK model can be solved
exactly [84, 81, 85, 86, 87, 88]. For this reason, the FK model is often taken as a test
bed for DMFT approaches and its extensions [55, 89, 90].

3.2.1 Hamiltonian

FKM includes two type of electrons, localized and massive f —electrons and itiner-
ant conduction c¢—electrons which have local Coulmob interaction with each other,
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FIGURE 3.1: Phase diagram of the particle-hole symmetric FK model in
2d in U-T plane, obtained by lattice Monte-Carlo, consisting of different
phases: Fermi gas (FG) at U = 0, charge-density wave insulator (CDW)
at low temperature and all non-zero values of U. High temperature
phases: Anderson insulator (Al) at intermediate values of U crossing
over to a weakly localized (WL) at smaller U, Mott-like insulator (MI)
at large U. The points and lines show phase boundaries, the dashed
line indicates the first order phase transition between WL and CDW
phases. Inset: extrapolation to the thermodynamic limit.
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see Fig. 3.2. The Hamiltonian of FKM will read as:
= 7:[K+7:[y+7:lv, (3.1)

where Hg, H, and Hy stand for kinetic energy, chemical energy and potential en-
ergy respectively, and are defined as

Hy = —t Z(c;rcj + h.c), (3.2)

(i)
=~ Z(P‘chci +usfl i), (3.3)
Ty =UY fg s, (3.4)

where

e i and j label the spatial sites of the lattice. (i,j) represents a pair of nearest-
neighbor sites in the lattice and indicates that the electrons only hopping to
nearest neighboring sites.

e the operators ¢! and ¢; are the fermion creation and annihilation operators for
electrons located on the ith lattice site.

e the operators #1;. = clc; and 7; F= f1 f; are the number operators which count
the number of electrons on site i.

e tis the hopping parameter for the kinetic energy of the electrons, and is deter-
mined by the overlap of at wave functions on neigh-boring sites.

e U is the repulsive Coulomb interaction between electrons on the same lattice
site. The term Ul iy ; represents an energy cost U for the site i to have two
electrons and describes a local repulsion between electrons.

e 11 is the chemical potential parameter which controls the electron numbers
(density).

Half-Filling case: We consider the case of half-filling band, where the number of
c-electrons is equal to f-electrons and their sum is equal to lattice sizes. For this we
set in the following we set . = py = p = U/2 corresponding to the half-filling
condition for both species.
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FIGURE 3.2: schematic of Falicov-Kimball Model at half-filling regime
for a random configuration for a 4 x 4 lattice.

3.2.2 Thermodynamic quantities

Because the f—electrons are localized, one can write the FKM in a quadradic form
and derive an effective Hamiltonian for each configuration [{n f}]

o= —ur ) flfi+CNT —peI +V)C, (3.5)

where C and C' are vectors that includes all annihilation and creation operators at
different sites
1

A

2

QY
Il

and C'=(ef, & ,---, &)

CN

and I is the identity matrix, T = —t }_; y |1) (j| and V = ¥; [i)n,(i].

Partition function

The partition function of the FKM reads
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Z="Tr [6_5}‘] = Z ePrs Li "fiTr, [e_ﬁ5+H[{"f}]5]
{ns}
= ¥ ePrrtimidet[14+ e P = ¥ P [{nf}],
{ns} {ns}

which is written sum over all possible charge configurations. P[{nf}] is partition
function (statistical weight) of the specific charge configuration {n¢} with

H{{ng}] =T — pel + V[{ns}], (3.7)

(3.6)

Average energy
The average energy per site over all configurations is given by

1 11

u = V<H>:VZ{ }E[{”fﬂp[{”fﬂr (3.8)
ny

with the energy for a specific configuration [{r}]

E[{nf}] = —Plfzi‘,"f,i+Tr{ [{ns}] [1+eﬁH {”f}]} }

(3.9)
= —9P [{ny}],
Specific Heat
The specific heat is given by
Cv =p Z P [{n}] [E[{ns}]* = &% [{nf}]] - ( ZE [{ne3] P {”f}})
Al o)
(3.10)

with

2 [{ny}] = asE [{n7}] = 3T [H [{n7}] [1-+ cosh (BH [{n;}])] "]
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3.2.3 Correlation function- f’s
For the f’s only the static charge susceptibility is non-zero and is given by
= U i-7)d 5 p
X ) = (igh ) = - L0 (pa), (3.11)
W/

where 7 and 7 label the lattice points in momentum and real space respectively. The
charge order parameter,assuming symmetry breaking with ordering vector Q, is

b5, = (3) = %Zeirﬁ (7). (3.12)

(3.13)

For the square lattice, the ordering vector for a charge density wave! is O = [, 71]
(and thus O = —Q) so all these quantities can be obtained from the MC history
of the observable 15 = \/LV Y5 (=1)"2 4, with 7 = 1% + r2f. For a triangular
lattice, since the ordering vector, if it exists, is in general not known one will have to
compute x, () for every 7.

checkerboard pattern for f-electrons means the occupation in one site is either 0 or 1.
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ke =1/122)ky =0 Ky, ky = 7 /i20) ke =0, ky= 7/(20)

FIGURE 3.3: Different ordering vector k= ke + ky9 for a square lattice.

3.24 Spectral function-c’s

A correlation function (O (7) O, (0)) where the operators O1 ; can be written solely
in terms of c-electrons’s can be written as
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(04 (1) 05 (0)) = %Tr [0y (1) 0, (0)]

—— Z Pl XinfiTy, [ *ﬁéfH[{”f}]éél (1) O, (0)}
{”f}

== Z P [{ns}] (T:01 (T )>[{”f}]

nf}

(3.14)

where Tr, is taken with respect to a quadratic Hamiltonian and Wick’s theorem ap-
plies inside the average.

Thus let us first consider the case of the Green’s function Oy = ¢;, 0, = ¢t using

]I

& (1) = e H{n}Cq,e~CH[{n }]C _ [e_TH[{”f}],C_']‘ (3.15)

which is obtained by integrating the equations of motion for ¢ (7). Now for Green’s
function, we have

1 _<H _BH -1 (3.16)
=LY i} { {3} (14 L) ]
{ng} b
where the following identity has been used
o [ ~pCH[{ns}]C; ﬂ _ det [1_*_6*!3H[{”f}]} [1+35H[{”f}]]‘1. (3.17)
1,]
In Matsubara space one obtains:
1
G (icwn) / dTe G (T P[{ns}] — , (3.18)
: =7 EP U a
and, by analytic continuation, for the spectral matrix we have
A(w) = L [G (w+i0") — G (w+ i0+)*}
27
(3.19)

_ % Y. P[{ns}]6(w—H[{ns}]).
{ns}
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The local density of states of the ¢ electrons is then given by

Aoe (@) = 5 L (71 A (@) [7) = T[4 (@)

—

- %pr {126 (@ —ex[{ns}]).

(3.20)

which this can be obtained for all frequencies by storing the MC history of eigen-
values ¢, [{ns}], or for a given frequency w by storing only the MC history of the

quantity ), e > with 7 — 0" which is the width of the regularized
(oea[{n}]) 4

delta function.

3.2.5 Inverse Participation Ratio

To measure the degree of the localization for c-electrons, one can use the so-called
Inverse Participation Ratio (IPR). The IPR of state |i) is given by

|7 )]
v = S 62

where |7)’s are eigenvectros of the position operator £ |¥) = r, [F) and § |[7) =, |7).
The IPR at a given frequency (for a system with no disorder) is thus given by

Zoc I‘a>5 (CL) — 80()

I (w) 5w ) (3.22)
Averaging over the position of the f-electrons one has
Yol 6 (w—ex[{nf}])
{3 / 625)

[(w) = %{%}P[{”fﬂ Y06 (w—eq [{ns}])

Note that in order to compute this quantity one has to keep the MC history of both

e [{nf}] and Iy, 11y

IPR-thermal average

Instead of evaluating IPR spectrum, we can also consider the thermal average of
IPR, i.e.

1 epldn -1 27|<7|1P>|4
==Y pl{n 1+ ePev[{ne}]| & \IPN
Z {nzf:} el ; [ ! } o (7 [) 2

here as before we need to keep the history of both &, [{n}] and I o[ {n;}])"
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3.2.6 Charge Stiffness
Definition

The charge stiffness is defined as [91]

= 7" ; my (3.24)

where the E;;’s are the many-body eigen energies of the system and ¢ is the total
flux inserted perpendicular to, say the £ direction, with periodic boundary condi-
tions and length L. The flux causes the hopping terms to change according to the

;9
.1.
minimal coupling prescription: cj, .cz — €'Tx ct 71 ¢Cr- D is also called Drude weight

and is related to the w = 0 component of the real part of optical conductivity
o' (w) = 27DS (W) + Oreq (W) (3.25)

D is supposed to be finite for a material that conducts current and should vanish
for an insulator. Note that the form Eq. 3.24 is the finite-temperature form of the
Drude weight.

For an Hamiltonian with time-reversal symmetry, D can be computed directly
from the free energy F = —% InZ

e~ PEm
621-“‘ - 2E ] 3.26
P =0 ; AR A P (3.26)

The time reversal symmetry is needed in order to have dyE,, (¥l J W) =0

=0 ©
where | is the current operator.

For our case, where the free energy can be obtained from the single particle
states, we have

D — Lx ‘4> O (3.27)
_ 2 Bey
Za¢1n [1+e } . (3.28)
sta
_ _; eﬁsw (3.29)

where ¢, = ¢, [{ny}] are the single particle eigenstates for a given configuration of

the f-electrons and using dpe, =0.

-
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Charge Stiffness for Falicov-Kimball Model

For the FKM, we obtain,
Liy-_ 1 ; g (ol Fio ) (@ Fecolw)
2 ;eﬁ5a+1 <DC| g O|“>+ a/#[x SD‘_SDC/ ( )

where |a) are the single-particle eigenstates with energies ¢,.

3.3 Towards a field theory description

In this part, we show how to map the FKM to the corresponing Ising model using
field theory descrptions for large U limits. We use formulation for coherent path
integral in appendix A to give this field theory descriptions.

Perturbation Theory for the Falicov-Kimball Model

For a fixed configuration of the f-electrons in the large U limit we want to treat
with kinetic term as small correction to the FKM Hamiltonian and consider it as
perturbation in the model. We can write equation 3.7 as?

H = Hy + H, (3.31)

with Hy = —u.I+Vand H, = T.

3.3.1 Coherent path integral for Falicov-Kimball Model

We can write equation 3.5 as follow

H—uN =Y (—pc+Ung;) dijcici+ Y cf Tej (3.32)
ij {irf)

2there is also a constant term related to chemical potential of the f-electrons for each specific
configuration such that we can add to the Hamiltonian for each fixed configuration.
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now for the partition function we have

Z = Zyle foﬁdT[Zij¢i(T)T¢j(T)]>o (3.33)
InZ = In Zg + In{e~ o 47[Z0 BT (0] (3.34)
el 11’1(G0_1+T)
InZ=InZy+Tr ln(l + GoT) (3.36)
(=1F
InZ=InZy—T T 37
n nZy—Tr Z p (GoT)* (3.37)
Here Z and Zj have the same with P[{#}] that we calculated from 3.6. and
InZo = BusY np,+Y In[l+ e P(—mel+lng,)) (3.38)
r r
In The FKM (Gp) ! (bare green’s function) would be
Gy ' (iwn) = (iwy + pel — UV [{ny}]) (3.39)
First order term
There is no contribution for the first order term k = 1
Te(GoT) =YY (Go)yr T =YY Go(r)Tpr =0 (3.40)
iwy 11! iw, T ’
because T has no diagonal element.
Second Order term
For second order term we have
——TI‘ GOT =5 ZZGO rr’GO(r/)(T)r’,r
5 zwn rr (3.41)
7! r—l—
- Z Y Go(")(T)y (r+5)Go(r + 0)(T) (y16,s
zwn r,0
Remark: For sum over Matsubara frequency
Z 20 (iwn) (3.42)

zwn
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with go(z) = I1; —L_ we can use
]

0(z) = }_ Res[go(2)]f () (343)
j ]

1

with Fermi-Dirac distribution function f(z) = ; TR

When we do the integration there are 4 possibilities for occupation of the set of
{1, 115,¢} as follows

{n,r=0n,155=0}

{nrf =1 n55 =0}

{n,r=1n55=1}

{n,;y=0n157=1}
Then we should write the result of the integration as combination of xg + x1 (7, £t
Nyys,f) + X211 1,4 5,¢) and by considering sum over each set of the {n, ¢, n,, 5 ¢} we

can calculate coefficients xg, x1 and x».
The final form of the second order term would be

1 2_ B2 pU, B
Ky = —ETr(GOT) =5 atanh(T) — Ecoshz ﬁ_ Z My f+ Ny f) 24 ...
4 1"
(3.44)
In the large U limit, this equation becomes
1 ~ P
K, = —ETr(GOT o Y (nyp+n,p66)° (3.45)
7,0

r,

by using s, = 2(n, — 3) we can map the FKM to the corresponding Ising model.

Ky = — 2Tr(G0T Zsrsw (3.46)

In the above expression, in fact £ 37 = Blesrand Jorr =

From Onsager solution for 2D Ising model we know kT, = 2.265189] and we can
compute transition temperature at large U for the FKM.
2.265189
Te=—F7 3.47
kT, T (3.47)

In the figure 3.4 there are different comparisons for different J, .
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FIGURE 3.4: transition temperature in comparison with numerical re-

sult (green curve with dot), the orange curve show the behavior of

fu) = % and the dashed blue curve is the transition temperature cal-

culated from a perturbative approach for the FKM. Two other curves

are for comparison. as you can see from the figure at large U both

the numerical and perturbative approaches are in correspondence with
each other.

3.4 Details of the Phase diagram

In this section, we start by introducing every phase in the full phase diagram, see
Fig. 3.1, of the model at half-filling. Before we focus on each phase, let us to put
introduce necceary concepts such that we can give a clear description of each phase.

Fermi Gass (FG) AtU =0

The model describes a trivial Fermi gas with lim,,_,0 DOS(w) = const, illustrated
in Fig. 3.5(h). The real part of the conductivity ¢’(w) has unitary Drude weight, i.e.
0’ (w) = Dé(w) with D = 1. Fig. 3.6(f) shows that for any finite temperature D = 0
for U > 0. As in the infinite dimensional case [92], this phase is unstable for any T.

Weak Localized/Anderson Insulator (WL/AI)

The is an interesting region overlooked in previous studies. The effect of the f-
electron averaging enters as a disorder potential for the c species and induces an
Anderson localization of the single particle eigenstates at low energies. Here, for
sufficiently small U and any finite L, the localization length becomes of the or-
der of the volume. In both regions we observe a finite DOS at zero energy, i.e.
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sizes. DOS(0) is independent of system size.
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lim,,_,0 DOS(w) # 0, see Fig. 3.5-(a,b). This is further corroborated by the results
presented in Fig. 3.5 (h), where we performed the binning of the DOS within a fixed
energy window around the Fermi level to avoid any ambiguity with the artificial
broadening of J-peaks. At T < 1and 2 < U < 7, the DOS acquires temperature de-
pendence, which is attributed to non-local fluctuations due to proximity to the CDW
phase [89, 90]. The behavior of the IPR can be seen in Fig. 3.5-(d-f) to differ in the two
regimes: in the WL throughout the spectrum we find IPR strongly dependent on the
system size, IPR(w) o« V1, except at the band edges, signaling predominantly de-
localized states. In the Al region, on the other hand, we find IPR(w) « V? for w in
a finite window around zero, |w| < Apg marking the localized region of the spec-
trum. The low-energy states are localized. With further increase of U this energy
window expands, while the density of localized states decreases and approaches
zero at the MI phase. Fig. 3.5 (g) shows that the IPR(0) as a function of U has a
V~! scaling at small U and an approximate crossing point at larger U. This cross-
ing point is only weakly dependent on L? and was used to extract the approximate
crossover line, shown in Fig. 3.1.

The conducting properties of WL/ Al phase are studied in Fig. 3.6, which shows
the real part of the conductivity ¢/(w) as a function of w at T = 0.5. In the WL
region (Fig. 3.6 (a,b)), ¢’ is zero at w = 0, but the finite size scaling at small w and
L < 48 implies that lim,,_,¢+ ¢/ (w) — const. In the Al region (Fig. 3.6(c,d)), no such
scaling takes place, and ¢/(0) = 0. We observe ¢/ (w) o e ME/Tg(w) where Ay
is the energy gap between the Fermi level and the energy of the first delocalized
state IPR(w < Apg) « V! and a is roughly linear with frequency at w — 0. This
temperature dependence is therefore compatible with that for activated hopping
(Fig. 3.6e).

Mott Insulator (MI) At high temperatures and sufficiently large U

This Mott-like phase sets in where the c-electrons develop a charge gap, DOS(w =
0) = 0 for |w| < A, while charge order is absent, see Fig. 3.5(c). This phase is adia-
batically connected to the point ¢ /U = 0 where A = U is the energy cost associated
with occupying a c-electron site with ny . = 1.

Charge Density Wave (CDW)

For any non-zero interaction U # 0 spontaneous symmetry breaking takes place as
temperature is lowered below T,y leading to a long-range checkerboard-ordered
phase, see Ref. [79] and Table 3.1. This phase is characterized by a zero-temperature
gap around w = 0, i.e. DOS(w, T — 0) = 0 for |w| < A with a charge gap A = U.
Within this phase, exact DMFT results for d — oo reported a more complex internal
structure with some sub-phases including sub-gap states at small U [93, 94, 95].
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FIGURE 3.7: a,b,c, Specific heat, f-electron susceptibility and Binder cu-
mulant for momentum g = {7, 7} at U/t = 6 and volumes 8,122,162,
illustrating the phase transition to the CDW state. Dashed arrow is the
transition temperature Tcpw obtained by the crossing of the Binder-
cumulant curves, shown in Fig. 3.8d. e, The distribution of energy val-
ues at the proximity of transition temperature to CDW-state at U = 0.5,
T = 0.0274 and system sizes 122,162,242, The existence of two max-
imums shown by vertical arrows indicate the first-order phase transi-
tion, which weakens with increasing system size.



3.5. Transition between different regions 53

3.5 Transition between different regions

We now turn to a discussion of the nature of the transitions between different re-
gions of phase space.

CDW transition - at large U

We find a previously reported transition between a disorder state at large T and a
CDW at small T [82]. The transition between the two is of Ising universality with
an order parameter given by the staggered f-occupation ¢s; = ¥, €/l™717 (21 fr—1)
as illustrated in Figs. 3.8(a-b) by the T-dependence of specific heat C, and f-electron
susceptibility at momentum Q = [, 77] for U = 6.

u Te v 0%

3.0 0.1370 | 0.97 £0.07 | 1.76 = 0.02
50 0.1339 | 092+0.11 | 1.74 £ 0.07
70 01171 | 1.00 £0.11 | 1.74 £ 0.07
10.0 0.0951 | 1.024+0.02 | 1.73 £0.07
12.0 0.0824 | 1.02+0.17 | 1.74 £0.07

TABLE 3.1: Critical exponents -y (susceptibility) and v (correlation length) of
the CDW transition for different values of U. The Ising exponents are y = 1.75
andv = 1.

In fact, for large U, an exact mapping to the 2d-Ising model can explicitly be
given [82]. Numerically, the transition temperature is determined by the crossing
of the Binder cumulant Bg(L) [96], see Figs. 3.8(c-d). Upon decreasing U, the high
temperature disorder phase evolves from a MI to an Al, but the nature of the tran-
sition into the CDW state is maintained, as highlighted by the Ising exponents, see
Table 3.1.

In agreement with previous studies we find that for 0 < U < 3, the phase tran-
sition appears to be first order [79]. This is illustrated by the double peaked energy
histogram in Fig. 3.8e with maxima denoted by arrows. Interestingly, the disap-
pearance of the double peak at U ~ 3 coincides with the WL-AI crossover of the
high temperature phase. The finite size scaling of Fig. 3.8e shows that the first order
nature of the transition weakens with increasing system size implying a continuous
transition in the infinite volume limit. This provides further evidence that the occur-
rence of the WL phase is a finite size effect. In the thermodynamic limit the Al phase
extends until U — 07 and the transition into the charge-ordered state is continuous
for all values of U > 0.

AI-MI transition

The existence of this transition in the FK model has not been reported previously.
The MI is characterized by DOS(0) = 0. As U is reduced the onset of the Al phase
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FIGURE 3.8: a,b,c, Finite size scaling results for specific heat, f-electron

susceptibility and Binder cumulant for momentum Q = [n,n] at

U/t = 10.0 and volumes 82,102,122, 162, illustrating the phase tran-

sition to the CDW state with Ising universality class. The critical expo-
nents are presented in table 3.1.

can be best read off by DOS(0) > 0, as illustrated in Fig. 3.5h, while ¢/(0) = 03. As
the f-electrons act as static scattering potentials the grand canonical partition func-
tion of the FK model can be understood as that of annealed disorder. Across the
transition f-electron observables remain smooth. For asymptotically large tempera-
tures FK maps to a binary random disorder model previously studied in the context
of binary alloys [97, 98] where transitions similar to the AI-MI transition have pre-
viously been observed. Our results suggest that for finite temperature the universal
features of the AI-MI transition are the same as the infinite temperature ones and
the annealed nature of the disorder plays no qualitative role in this regime.

WL-AI crossover

This crossover turns out to be a feature of finite system size. The crossover is re-
flected in the AC conductivity and is also clearly visible in the IPR(w = 0) which
displays qualitatively different behavior in the WL, Al and MI phases. As discussed
above, at large temperatures, the nature of the disorder is not relevant as all possible
configurations of the f electrons are equally probable. Therefore, results resembling
those of quenched disorder are to be expected. For 2D these imply the existence of
a so-called weak localized regime where the localization length { ~ 1/IPR(w = 0)
depends on the coupling constant U in an exponential fashion [99]. Therefore, for

3We used the numerical criterion of DOS(0) > 10~7 in our energy units of ¢



3.6. Discussion 55

any finite system of linear size L and sufficiently small U, there is a regime where
L < . In this case, the system displays properties of a bad metal.

3.6 Discussion

Having described the overall phase diagram of the two-dimensional half-filled FK
model we now turn to a discussion of the significance of our findings. The fact that
0'(w — 07) # 0 in the temperature range above the charge ordered state at small
U, see Fig. 3.1, suggests the identification of the WL regime with the previously
reported metallic phase of the model [55, 79]. As shown above this regime is a
feature of the finiteness of the underlying lattice and vanishes in the thermodynamic
limit. Within the DMFT, the metallic phase originates from a finite local DOS(w = 0)
and the neglect of spatial correlations [55, 89]. The Al phase is captured by disorder
extensions of the DMFT with the addition of quenched disorder [100, 101, 102, 103,
104].

In this chapter, we primarily addressed the intricacies of the phase diagram
above the charge ordering transition. Naively, the onset of charge order with prop-
agation vector Q in the weakly interacting or small U regime is associated with the
instability due to a perfectly nested Fermi surface. Although DOS(w = 0) # 0, the
absence of a Fermi surface implies that even for arbitrarily small U this CDW pic-
ture cannot apply, when coming out of the Al phase. It thus might be worthwhile to
extend our analysis to the charge ordered part of the phase diagram. Interestingly,
as can be read off from Table 3.1, the critical exponents associated with the onset
of charge order in that region coincide with those of the classical two-dimensional
Ising model. This raises the possibility that ordering transitions, traditionally inter-
preted within the Stoner theory of delocalized electrons, should be better described
within a strong-coupling framework. This relates to the on-going debate between
the weak- or strong-coupling nature of the onset of order near the emergence of su-
perconductivity in e.g. the iron-based superconductors and the heavy fermions [105,
106].

Our results may also shed some light on the finite temperature phase diagram
of the three-dimensional half-filled Hubbard model, where at low temperature an
antiferromagnetic phase sets. Ignoring the dynamic nature of the antiferromagnetic
order parameter the system can be described by a static model with annealed vector
disorder. Thus, one may expect an Anderson localized phase at high temperatures
separating the weak coupling metallic phase from the Mott insulator at large U. A
recent study of the Anderson-Hubbard model with spin-dependent disorder leads
to FK-like physics in parts of the phase diagram [107] to which our findings may be
relevant.

Finally, we note that our results may be directly relevant to studies of localiza-
tion in cold atoms [108, 109, 110]. The model serves as a prototype for recent im-
plementations of mass unbalanced fermions in optical lattices [111, 112, 113] and
the physical properties of the model extend past the infinite mass ratio regime [114,
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115]. It would be interesting to see an experimental confirmation of the existence
a the localized phase for a translational-invariant system in the absence of explicit

disorder. A direct verification with ultracold atoms systems should be possible with
state-of-the-art technology.
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Chapter 4

Spatial Structure of Entanglement

spooky action at a distance.
—Albert Einstein

In this chapter we map out the spatial entanglement structure of a low-dimensional
quantum system, the transverse-field Ising chain, both in the ground state and in
thermal states. For this purpose we use the logarithmic negativity [116, 117,118, 119,
120, 121, 122], which shares many of the central features of the entanglement entropy
in pure states, such as the area law for ground states of gapped Hamiltonians [123,
124, 125] or universal contribution appearing at quantum critical points [126, 39,
127]. In contrast to the entanglement entropy, however, the logarithmic negativity
remains an entanglement measure also for mixed states [39, 127, 122]. In order to ob-
tain information about the spatial entanglement structure, we study the logarithmic
negativity of two disjoint blocks of identical size ¢ as a function of their separation d,
which can be viewed as the entanglement analog to a conventional quantum corre-
lation function. For an illustration of our setup see Fig. 4.1 (a). We find that for any
fixed size ¢ of the two blocks there appears a sharp entanglement threshold d* be-
yond which the logarithmic negativity vanishes identically. For larger distance than
d* the two blocks become unentangled, accordingly, as measured by the logarithmic
negativity. In Fig. 4.1 (b) we show the results for the entanglement threshold d* as a
function of ¢ for different parameters of the transverse-field Ising chain, where one
can see that the spatial extent of entanglement is restricted to rather short distances
even when the system resides at the quantum phase transition where quantum cor-
relations are long-ranged.

While for the case where the two blocks consist of single qubits this result is well
known [128, 129, 130, 131, 132], here we study systematically the crossover from
the single-particle to the multi-particle case. We compute the logarithmic negativity
numerically for large systems using the Time Evolving Block Decimation (TEBD).
In addition, we develop a simple effective model explaining our numerical observa-
tions.
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FIGURE 4.1: a) Illustration of the setup used in our work. We consider
two spatial regions A and B in a large chain each of which contains ¢
sites. The two regions are separated by a distance d, illustrated here
for ¢ = 4 and d = 5. b) Results for the entanglement threshold d*
beyond which distance logarithmic negativity vanishes. We show d* as
a function of block size ¢ for the ground state (GS) and for a thermal
state at the inverse temperature 5] = 25. For / = 5 in the ground state
we can only give a lower bound on 4* which we indicate in this plot by
adding an error bar.

4.1 Definition of Entanglement

Definition 1.

Let |¥) be a state of many physical systems and |®;) a state in system i. Then, |'¥)

is called entangled if it cannot be expressed as a product of |®;) for any set of |P;).
If |¥) is not entangled, it is called separable. If |¥) is a product of |®P;), |¥) is

called a product state. All product states are separable. For example, one can easily
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check that the following state |¥) is entangled

11) + |00
|‘f’>:|>% # (al1) +510)) ® (a' [1) + 1/ |0)) @1)
—aa'[11)+ab/ [10) +ba’|01) + b1 |00)
Another Approach

A second, more experimentalist approach to the definition of entanglement is based
on the way how entanglement can be obtained. Consider two experimental setups A
and B. As these setups are separate, they may only apply local operations. They may
use classical communication to coordinate those operations. Then, entanglement
can be defined by these operations[133]:

Definition 2.

If a shared state p can be obtained by two parties A and B using only local operations
and classical communication, p is a separable state.

Note that these two definitions of entanglement are equivalent.

4.2 Entanglement Measures

An entanglement measure quantifies how much entanglement is contained in a
quantum state. Formally it is any nonnegative real function of a state which can
not increase under local operations and classical communication (LOCC) (so called
monotonicity), and is zero for separable states[134, 135]. Here we introduce several
entanglement measures which can be useful in condensed matter physics.

4.2.1 Density matrices and entanglement

Here, we give a short reminder of density matrices, also so called density operators,
which conceptually take the role of state vectors. They encode all the accessible
information about a quantum mechanical system. The entanglement structure just
discussed can also be found from the density matrices associated with the state |¥).
This is in fact, the standard way to obtain it.

Definition
In general a density operator p can be defined as

p= Zpi|¢i><lpi’r (4.2)
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where p; is the probablity that the system is in |¢;) with }; p; = 1. Note that |¢;)’s
need not be orthonormal and decomposition is not unique. This density matrix has
the following properties:

e 0> = p projector
e o' = p hermiticity
e Trp = 1 normalization

e 0 > 0 positivity

Pure and mixed state

A pure quantum state defines as a vector state |¢;) in Hilbert space and density
matrix for such a state is

o= yi){gi] and Tr(p®) = 1. (43)
A mixed quantum state defines as a probabilistic mixture of a pure state
p=2_pip} =) pili) (¥l and Tr(p?) <1. (44)
1 1

Thermal states: thermal states are special case of mixed states. Introducing a Hamil-
tonian H = Y0, E,|n)(n| we can think of this classically, as saying that state nth
has energy E,,. The boltzmann distribution at temperature T is p, = e~/ Z, where
Z =YD _ ePEn with B = 1/kpT and kp is Boltzmann’s constant. In quantum setting
the density matrix becomes

D De PE|E,)(E,| e PH
p= Y pilEn) (| = B BBl €70 @5)
n=1

This is known as the Gibbs state or the thermal state. It describes the state of a
quantum system at thermal equilibrium.

Reduced density matrices (RDM)
If we denote the total density matrix with
p=[¥)NY], (4.6)

one can, for a chosen division, take the trace over the degrees of freedom in one part
of the system. This gives the reduced density matrix for the other part, i.e.

pa =Trg(p) , pp =Tra(p). (4.7)
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These hermitian operators can be used to calculate arbitrary expectation values in
the subsystems. Moreover, one can write them based on their diagonal form, see
appendix B

pu = YAl |@0) (@], a= A, B, (4.8)
n

this leads to two features
1. p4 and pp have the same non-zero eigenvalues
2. these eigenvalues are given by w, = |A,|?

Therefore the eigenvalue spectrum of the p, gives directly the weights in the Schmidt
decomposition and a glance at this spectrum shows the basic entanglement features
of the state, for the chosen bipartition. One also sees that the |®%) are the eigenfunc-
tions of the p,. For the single-particle RDM’s mentioned in the introduction, these
eigenfunctions are known as “natural orbitals” in quantum chemistry[136].

4.2.2 Entanglement Entropy

Whereas the full RDM spectra give the clearest impression of the entanglement in a
bipartite system, it is clever to have a simple measure which encode this information
into one number. This can be achieved by generalizing the usual (von Neumann)
entropy definition to reduced density matrices. This so called entanglement entropy
S. It measures a mutual connection between two parts of a system and therefore
defines!

S(pa) = S(pp) = —Tr(palog, pa) = —Tr(pglog, pp) = — an log, w,  (4.9)

The most important features are
e S only meaures the entanglement for pure state

e S is the standard meaure for entanglement in condensed matter physics for
bipartitions. It is based on spectrum of p4 which is identical to the spectrum
of p2. Thus p4 = pp holds for an arbitrary bipartition

¢ S vanishes for product states, and has a maximal value of S = log, D if one
has D non-zero eigenvalues which are all equal, w,, = % forn=1,2,...,D.

!Note that in this thesis, we use log, instead of logarithm in natural basis log, = In. Both cases
reach to same results and doesn’t affect the physics.
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4.2.3 Rényi Entropy

Another bipartite entanglement measure is the Rényi entanglement entropy S,. Itis
also defined in terms of the reduced density matrices, and a Rényi index &« > 0. The
generalized Renyi entanglement entropies are definea by

Se(pa) = %lnTr(p”A) and a €N (4.10)

In the limit &« — 1, the Renyi entanglement entropy approaches the Von Neumann
entanglement entropy. For &« > 0 and & # 1, can be an entanglement measure for
mixed state. Recently, the generalized Rényi entropies have attracted considerable
attention in the condensed-matter community, due to their ability to encode infor-
mation about the whole entanglement spectrum of p 4, i.e., this allows the set of S, to
contain much more information than S,—; alone. The Rényi entanglement entropy
can be computed in quantum Monte Carlo simultions[137].

4.2.4 Relative Entropy of Entanglement

The relative entropy S(p || o) between two states p and ¢ is defined as

S(p || o) = Tr[p(log, p — log, 7)], (4.11)

which is evidently not symmetric under exchange of p and ¢, and is non-negative,
i.e., S(p || ) > 0. By knowing this, one can define the relative entropy of entangle-
ment as an entanglement measure that quantifies how much a given entangled state
is distinguished operationally from the set of separable states or those with positive
partial transposition(PPT). For more information about PPT, see appendix C

Er(p) = minS(p || 0), (4.12)
ceD

where D denotes the set of all separable states and the minimum is taken over the
family of separable states. The task of finding the relative entropy of entanglement

for arbitrary states p involves a minimization over all separable states, and this ren-
ders the computation of this entanglement measure very difficult[138, 139].

4.2.5 Entanglement of Formation

The entanglement of formation represents the minimal possible average entropy of
all pure state decompositions. Given a density matrix p of a pair of quantum systems
A and B, consider all possible pure-state decompositions of p, that is, all ensemble
of states |ip;) with probablities p; as in Eq. 4.4

o= Zpi|lPi><lPi|-
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For each pure state, the entanglement S is defined as the entropy of either of the two
subsystems A and B as we explained in Eq. 4.9

S(p) = —Tr(palog, pa) = —Tr(pg log, pp)

The entanglement of formation of the mixed state p is then defined as the average
entanglement of the pure states of the decomposition, minimized over all decompo-
sitions of p

E(p) =min} _p;S(pi)- (4.13)

A state p is separable if and only if E(p) = 0 and hence can be represented as
a convex combination of product states as p = ¥; pio?t ® p?, where p# and p? are
pure state density matrices associated to the subsystems A and B.

4.2.6 Concurrence

Anothe entanglement measure that one can calculate the entanglement of formation
from it is concurrence[140, 141]. The concurrence is an entanglement monotone
defined for a mixed state of two qubits as

C(p) = max(0,A1 — Ay — Az — Ay) (4.14)

in which Ay,..., A4 are the square roots of the eigenvalues, in decreasing order, of
the product matrix R? between two qubits[141, 142]

R = pp, (4.15)

where p = (0 ® 0y)p*(0y ® 0y) is the spin-flipped matrix of p and oy is the Pauli
matrix. Note that the two qubits can be at any distance from each other. To compute
it, one need to access the reduced density matrix between them.

4.3 Logarithmic Negativity

The aim of this work is to study the spatial structure of entanglement in equilibrium
states of the transverse-field Ising chain as depicted in Fig. 4.1. The entanglement
entropy, which is the paradigmatic entanglement measure for the characterization
of quantum many-body systems in ground states, cannot be used for that purpose
since it can only access the entanglement between a subsystem and its remainder,
but not the entanglement between two subsystems. Here instead, we use the loga-
rithmic negativity €yr.

Let us denote by p the density matrix of the system, which can be either pure or
mixed. To compute the logarithmic negativity, it is necessary to access the reduced

2R is a non-Hermitian matrix
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density matrix p4 p of two subsystems A and B which can be obtained from p by
tracing out all the degrees of freedom not belonging to A or to B:

pap = Trgz p. (4.16)

Here, Troz denotes the trace over the complement AB of A and B. The reduced
density matrix p4 g can be represented as

PAB—ZC o) (v| @ [m) (n], (4.17)

where |i) and |v) label the basis states of the local Hilbert space H, of subsystem
A, and |m) and |n) of Hp accordingly. C};, are the coefficients given by C;,,, =
<“l/l, m'qu,B |V/ 1’l>.

The logarithmic negativity is an entanglement measure based on the positive
partial transpose (PPT) criterion [143, 144], which provides a necessary condition
for pap to be separable and therefore to contain no entanglement. Central to the
PPT criterion is the partial transpose operation Tp performed on one of the two
subsystems, B say:

pits =1a® Tgloas = Y Chimlu) (v| ® |m)(n], (4.18)
o

which leaves the basis states in A unchanged but performs a transpose on B. In
the end, this operation is equivalent to C},;, — Cj;,; when comparing Eq. (4.17) with
Eq. (4.18). While the eigenvalues of p4 p are probabilities and therefore non-negative
real numbers, this is not necessarily the case for the partially transposed pz;’fB. When

pA,p is separable and therefore contains no entanglement, the eigenvalues A of pszB
have to be non-negative, which is the aforementioned PPT criterion. In turn, this
means that in case there exists a negative eigenvalue of pfﬁB, the reduced density
matrix p4 g has to be entangled. The logarithmic negativity £ quantifies to which
extent the partially transposed density matrix p’? between two subsystems fails to
be non-negative. More specifically, £ is defined as

En = log, [|p™[|1 = log,

1+ ) (Al —A)], (4.19)
A

where ||.||; denotes the trace norm, and A the eigenvalues of pEBB. In general, the PPT
criterion is only a necessary but not a sufficient criterion for entanglement, i.e., there
might be states that signal a vanishing logarithmic negativity that are, however, not
separable. In this context it is important that £, constitutes an upper bound to the
distillable entanglement [145]. A vanishing £, therefore means that such a Bell pair
distillation is not possible.

For quantum many-body systems the logarithmic negativity has been studied
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extensively in the literature [117, 118, 143, 116, 146, 147, 148]. In particular, it has
been found that £, displays the same universal contributions at quantum critical
points [126, 39, 127], as does the entanglement entropy [126, 40, 124]. In particular,
the logarithmic negativity for two adjacent large blocks of size ¢; and ¢, becomes
[126]

£1+£2

with c the central charge of the corresponding conformal field theory, which is a
universal property of the underlying quantum phase transition. For ¢/, — oo, a
situation which is equivalent to measuring the entanglement between a subsystem
and its remainder, one obtains Exr ~ (¢/4)log(¢1). The entanglement entropy has
been intensively studied analytically [149, 40, 150, 151] and numerically [152, 153,
154, 155, 156] for the ground state of the 1D transverse Ising model. On general
grounds the entanglement entropy is characterized by an area law [125, 124, 157], al-
though at the critical point a logarithmic dependence on the size {; emerges leading
to S ~ (¢/3)log(¢1), which has the same functional dependence as the logarithmic
negativity.

In the case of disjoint blocks, the set up that we aim to address in this chapter,
much less is known in general. Using conformal field theory it is possible to prove
that the logarithmic negativity is a scale-invariant quantity at the critical point [126,
158, 159]. Specifically, £y is a function only of the dimensionless quantity y =
(v1—u1)(v2—1p)

(up—uy)(v2—01)’
and u», v, of the second block.

One case that has been studied already extensively is when each of the two
blocks contains a single spin [128, 129, 130, 131, 132]. Then, the entanglement
between the two spins exactly vanishes beyond a distance of a few lattice sites, a
phenomenon that has been termed ‘entanglement sudden death [160, 161]. How
entanglement behaves for disjoint blocks larger than a single spin, is, however, not
yet known.

In view of the sudden drop towards vanishing entanglement known for the
single-spin case, we introduce in the following the notion of the entanglement thresh-
old d*. We define d* to be the maximum distance d between two subsystems such
that the two systems remain entangled. It is the main goal of this work to study this
entanglement threshold in the transverse-field Ising chain®.

Enr ~ iln{ bb ] (4.20)

where 11, v1 are respectively the left and right edges of the first block,

3Since we study how the entanglement vanishes, it is important to estimate our numerical accu-
racy of the program which does not go below 1013,
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4.4 The model

The model we consider is the one-dimensional Ising model with a transverse field
(TFIM) described by the following Hamiltonian:

1( L1 L
H=-3 (] Y ool + hZUf) , (4.21)
i=1 i

where | denotes the spin-spin coupling, & the transverse field and (Tl-x =) the Pauli
matrices acting on the i-th lattice site. For convenience, we set the lattice spacing
a = 1 and choose open boundary conditions. This model undergoes a quantum
phase transition [2, 162] at zero temperature when | = h. For h < |, the system is in
a ferromagnetic phase, while for & > | in a paramagnetic one. The order parameter
of the transition is the magnetization my = L™1 Y o7 along the spin-spin coupling
direction which is nonzero in the symmetry-broken phase and vanishes in the para-
magnetic one. At nonzero temperature a symmetry-broken phase cannot exist for
this one-dimensional system according to the Mermin-Wagner theorem [163, 164,
165].

In the following we study the entanglement properties of the transverse-field
Ising chain as a function of temperature. Therefore, in general, our system resides
in a thermal mixed state given by the density matrix p of the canonical ensemble:

0= %MH, (4.22)

1
with g = T the inverse temperature, H the Hamiltonian and Z = Tr (e_ﬁH ) the

partition function.

4.5 Numerical Approach

Although the TFIM is exactly solvable by mapping the problem to a free fermionic
theory using a Jordan-Wigner transformation [2], the computation of the logarith-
mic negativity remains complicated. The main problems arise when performing the
partial transpose operation, which in terms of the fermionic degrees of freedom does
not have a solvable structure [166, 167, 119]. Therefore, numerical techniques are re-
quired and we use for that purpose the TEBD in the following [57, 168]. Since we
aim to study both the ground as well as nonzero temperature states, we use both the
pure state matrix product states (MPS) and finite-temperature MPS formalism [169,
170, 171]. In the chapter 2, one can find the full descriptions of these methods that
we use in this chapter.

To compute the logarithmic negativity for a generic state |i), we need access to
the reduced density matrix and its partial transpose. Therefore one needs to com-
pute p = |¢) (¢| and trace out those sites which are not included in the blocks A and
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a) T3 1o
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Qi—1 —?— QO
oF)

T o

Q41,04

FIGURE 4.2: a) MPS representation of a quantum state |¢) and its struc-

ture at each site i. b) Reduced density matrix representation of two sub-

systems A and B, i.e., p p and its partial transpose o, Ap whichis carried

out in region B. c) MPS representation of the thermal state [$p). Auxil-

iary degrees of freedom ¢; have been introduced to purify the thermal

state. d) Reduced thermal density matrix between two regions A and
B. Note that all other degrees of freedoms have been traced out.
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B. As we expained in chapeter 2, the MPS representation of of pure state |i) has the
following form

lp) = Z Toto o Ty Tt o .. 0oi...01), (4.23)

061 “Ll

where each Ty, | ,. is a rank-3 tensor, which therefore depends on the local state |0;).
The MPS representation thermal states which are along with an extra index ; for
auxiliary Hilbert space for each site is

’lP,B> Z T(Tlgl . Z;lallzp‘z

(7' U'L
Dél...IXL 1

T,XLL f|0’15'1...0’i(7'i...0'L(7’L>. (4.24)

Note that in the case of thermal states the auxiliary degrees of freedom must be
traced out. Thus the reduced density matrix and its partial transpose for both pure
and thermal states will have the same form. Fig. 4.2 shows the reduced density
matrix and its partial transpose using MPS based diagrams.

pan=Trag(¥)yh) = & COrdmd b (0101004, (01 ... 1))
0;,0/€{A,B} )

( (01...00...00)a,(01...0{...0))B |, (4.25)

where the coefficient matrix C for pure states reads as

/
ot

(01..00) ps(0]0p) A o 01t ! oL
C(O’l...Ug)B,(O'{...U’é)B - /Z{ }(Ttxl Tlxll ) (Taz 1% TIXI 1,0/) R (T(XL_l T[X/Lfl)’ (426)
0;,0;¢{ A,B
K1...01 1
ay..nf_q
and for thermal states reads as
(09...00) 4, (07...0)) 4 o151 0 0 T o0 ololt Py S, A
clr-rondeca oy (qan Tl L, 1) s,

/
U’ilo'i ¢{14/8}/
_ =
ai/(Ti P05 RS |
! !
Xp.-87 1

(4.27)

the partially transposed pEB,B is given by
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p?:‘ij = Z C((Zz:::af)A”(Ull';ﬂz)A | (0’1 O Ug)A, (0’1 O O'g)B >

( (07...00...00)a,(01...00...0))B | (4.28)

Note that in Eq. (4.28), the partial transpose operation is performed by acting on
block B by exchanging the indices in the coefficient matrix C.

In our calculations we consider a chain of length L = 200, which is sufficiently
large that boundary or finite size effects can be neglected for both ground state and
nonzero temperature. The two blocks have the same size ¢ and are situated in the
middle of the chain, i.e., the positions of the left edge of each block are respectively
% + ‘z—i, with d the distance between them. For the TEBD calculations we ensure that
our results are converged with respect to the bond dimension X.y. In particular,
we find that in both the phases (h/] < 1orh/] > 1), xmax = 32 is sufficient to get a
converged results for block sizes ¢/ = 1...5. For larger values of ¢ > 5 it is difficult
to go to higher values of X,x due to larger memory requirement, however, we
have checked carefully that the ground states of the calculations are converged with
respect to the chosen X,y Values for all 11/], see Fig. 4.3. For nonzero temperature,
we employ a second order Suzuki-Trotter decomposition with an imaginary time
step of 6 = 0.005/], to cool the system from B = 0.0 down to the considered
temperature f = %

4.6 Results

After having presented our numerical techniques, we will now present our results.
In subsection 4.6.1 we discuss the entanglement properties for the ground state, and
afterwards in subsection 4.6.2, we consider the case of thermal states.

4.6.1 Logarithmic negativity in ground states

The logarithmic negativity computed in the ground state of the TFIM is depicted in
Fig. 4.3 for various values of the transverse field &, from top to bottom, and several
subsystem sizes ¢. Distance d = 0 refers to the case of the two blocks located directly
next to each other, d = 1 to the case where there is one site in between, and so on.

Let us first analyze the ferromagnetic phase described by 1 = 0.8 and 1 = 0.9.
For ¢ = 2, the logarithmic negativity drops to zero at d* = 2. By increasing the
size of the blocks, the entanglement threshold d* increases, which means that the
two blocks remain entangled over a longer distance. Up to ¢ = 4 we can accurately
detect d*, while for ¢ > 4 the logarithmic negativity reaches the numerical precision
in a smooth way before the appearance of a sudden death of the entanglement,
making it difficult to unambiguously extract d*.

Comparing the results of the entanglement threshold at criticality, /] = 1 with
h/] =0.8and h/] = 0.9, we observe that for £ = 2 they have the same value d* = 2.
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On the other hand, the results start to differ increasing the subsystem size ¢, as one
can see for £ = 3 and ¢ = 4, where the logarithmic negativity drops to zero at a sub-
stantially longer distance compared to the ferromagnetic phase. This reveals how
the presence of the long-ranged quantum correlations enhances the entanglement
between two separated relatively large blocks. In particular, for £ > 4 one obtains
d* > 30, where the entanglement threshold is beyond what we can reach reliably
numerically.

For the paramagnetic phase we consider the fields h/] = 1.5 and h/] = 2.0.
On general grounds, we see in Fig. 4.3 that the logarithmic negativity drops to zero
earlier compared to the cases I1/] < 1, leading to a smaller entanglement threshold.
For example, for ¢ = 2 the entanglement vanishes after one site separation d* = 1.
Moreover, we observe that there is a dependency of 4* on the value of the field /1/].
For all the subsystem sizes ¢ considered, the higher the field 1/] the smaller the
entanglement threshold d*.

All the three different regimes studied share the same behavior for the entangle-
ment when ¢ = 1. In the case each block has a single spin, the logarithmic negativity
vanishes unless the two sites are at most next-nearest neighbors, i.e. 4* = 1. The re-
sult obtained at criticality is particularly surprising since one might expect that the
long-ranged quantum fluctuations would lead also to long-ranged entanglement.
We find that the strong quantum character of the critical point becomes manifest for
large block sizes. In order to understand the sharp entanglement threshold for ¢ =1
we provide a simple model system in Sec. 4.7.

4.6.2 Logarithmic negativity at nonzero temperature

Switching from zero to finite temperature, thermal excitations start to play an im-
portant role. For example, the one-dimensional TFIM has a phase transition only at
zero temperature [172]. This means that the correlation length stays finite through
all values of the transverse field h.

Fig. 4.4 shows the logarithmic negativity as a function of temperature T/] and
the field //]. We consider a chain of L = 200 lattice sites, and each of the two
partitions contains ¢ = 4 spins. From Fig. 4.4 (a) to Fig. 4.4 (d) we increase the dis-
tance d between the two partitions from d = 0 to d = 3. Generally we notice that the
higher the temperature, the more entanglement is suppressed. This observation is in
agreement with the expectation that thermal fluctuations tend to suppress quantum
coherence and consequently entanglement. In the opposite regime of low tempera-
ture, the logarithmic negativity shows a peak in the vicinity of the quantum phase
transition which also survives at nonzero temperature.

We will now study quantitatively how the logarithmic negativity decays by in-
creasing the distance d between the two partitions at finite temperature. Fig. 4.5
shows € as a function of the distance d for different values of the inverse tempera-
ture BJ at a fixed h/] = 1.0. At very large temperature, here f] = 5.0 in Fig. 4.5 (a),
the thermal fluctuations have a strong influence on the entanglement. For the parti-
tions of size £ = 1 the logarithmic negativity drops to zero immediately, i.e., d* = 0
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FIGURE 4.3: Logarithmic negativity as a function of distance between
two blocks of size ¢ from ¢ = 1 to ¢ = 7 in the ground state of the TFIM.
In order to avoid finite-size effects, the two partitions are centered at
the middle of the chain with L = 200 lattice sites with maximum bond
dimension Y. = 32. We show &£y for different values of the trans-
verse field h/] from h/] = 0.8 (a) and h/] = 0.9 (b) (ferromagnetic
phase) to /] = 1.0 (c) (criticality) to h/] = 1.5 (d) and h/] = 2.0 (d)
(paramagnetic phase). The dashed lines in the (b) and (c) for £ = 6,7
show 8_/\/' for Xmax = 24.
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chain of L = 200 spins. Each panel is for a different distance d. from
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shown in a log-scale.
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means two spins are entangled only when they are nearest-neighbors. For ¢ > 2, the
logarithmic negativity vanishes after the separation of one lattice site, i.e., d* = 1.

By reducing the temperature to ] = 15, thermal fluctuations remain sufficiently
strong to restrict the entanglement threshold considerably. As shown in Fig. 4.5 (b),
for ¢ = 1, the logarithmic negativity between two blocks vanishes as soon as the
distance between them is more than zero site. For / = 2 and ¢ = 3 however two
blocks remain entangled for a few more sites but of substantially shorter distance
compared to the ground state. The thermal fluctuations show their dominant effect
better for larger block size. One can see this by looking at the cases / = 4 and ¢ = 5.
Both drop to zero at approximately the same distance. Reducing the temperature
turther, the effect of thermal fluctuations becomes smaller as expected. For example
in Fig. 4.5 for ] = 25.0 and BJ = 35.0, the logarithmic negativity for /{ = 4and ¢ =5
drops to zero at different threshold distances as a consequence of the less dominant
effect of thermal fluctuations. The value of 4* for I = 3 has converged for these BJ’s
but not for / = 4,5.

The behavior of the entanglement threshold as function of temperature for dif-
ferent ¢ and transverse field is shown in Fig. 4.6. Away from criticality the entangle-
ment threshold saturates quickly to a constant value for each ¢, see Fig. 4.6 (a) and
(c). With reducing temperature, d* does not change and reaches to its final value at
ground state which is an upper bound for d* at finite T. Let us point out that the
yellow curve in Fig. 4.6 (a) corresponding to ¢ = 3, seems to reach convergence al-
ready at B] = 50.0. Nevertheless, this value differs by one lattice site from the result
obtained for the ground state. This is due to how close we are to the ground state.
The thermal activation of the lowest energy excitation is proportional to e #° with s
the gap. For 1i/] = 1.0, we have s = 271/ L such that e #* ~ 10~! which means we
need to be of much lower temperature to suppress thermal excitations.

At criticality, the entanglement threshold d* increases with decreasing tempera-
ture, Fig. 4.6 (b). For small ¢ < 2 the value of d* converges to its value in the ground
state at some temperature. The convergence to the entanglement threshold in the
ground state becomes slower for large value of /. In other words d* increases by
increasing ¢ and reducing the temperature, see Fig. 4.6 (b) for ¢ = 3,4, 5.

4.7 Entanglement threshold from effective two-level sys-
tems

In this section we want to shed some light on the sudden drop of the logarithmic
negativity for two spins by providing a simple effective model. Of central impor-
tance in this analysis is the possibility of writing, on general grounds, any hermitian
operator of a L-spin system in terms of direct products of Pauli operators. In par-
ticular, we focus on the density matrix since it plays the main role in computing the
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logarithmic negativity:

4
o= Y om0 @0, (4.29)

1’[1,..,1’1L21

where a,, = 0,x,y,z, and 9 = 1, the 2 x 2 unit matrix. From Eq. (4.29), the density
matrix is fully determined by the values of the correlation functions since py,,.. », =
Trlo o' ® .. @ 07"].

The case we study is a two-spin problem. We consider two spins and label the
position of one of them at site 1 and the other at site 1 + 4. This choice permits us to
deal with a small number of correlation functions, leading to a simple and intuitive
analytical condition for having non vanishing logarithmic negativity. In particular
we focus on the paramagnetic phase, where the structure of the reduced density
matrix allows us to derive a condition for nonzero logarithmic negativity from an
effective two-level system.

4.7.1 Reduced density matrix in the paramagnetic phase

In the paramagnetic phase, the 4 x 4 reduced density matrix p4 g written in the basis
{454,140, 114, 11,1}, is characterized by having nonzero entries only on the
diagonal and the anti-diagonal:

PA,B (11 1) (()
0 B(2,2
PAB = 0 0AB (3, 2) (430)
PA,B (4/ 1) 0

The reason for the vanishing of the other matrix elements is symmetries of the
Hamiltonian, as one can directly see from writing those entries in terms of the re-
spective two-point correlation functions. For example, let us consider p4 p(1,2) =
00x — Pzx +1(poy — Pzy), in which pg, 4., , = (07 1(711}:;). Since we are evaluating the
correlation functions in the ground state and the system is symmetric under time
reversal, it follows that pg, = p;, = 0. Moreover, in the paramagnetic phase where
the ground state does not break the Z; symmetry, we also have pp, = pzx = 0.
Taking into account all these considerations we conclude that p4 p(1,2) = 0 and
similar argumentations hold for the other matrix elements p4 5(1,3), pap(2,4) and
OA,B (3, 4).

The partial transpose of the density matrix is therefore determined by two un-
coupled effective two-level systems:

pap(1,1) pap(2,3

3,2 4,4

ol = PA,B(() ) pap(4,4) (4.31)
0



4.7. Entanglement threshold from effective two-level systems 77

For the sake of simplicity, let us focus only on one two-level system, since both of
them have the same features:

s _ ( PaB(11) PA,B(213)) 432
f1 (PA,B(312) pap(4,4) )’ (432

Let us denote with § = p, 5(2,3) the coupling between the two levels, with E
the eigenvalues of the matrix (4.32) and with E_ = pa5(1,1), E+ = pap(4,4) the
unperturbed ones. For an illustration see Fig. 4.7.

The picture of the two-level system in Eq. (4.31) gives a simple physical expla-
nation for the spatial behavior of the logarithmic negativity. Although the reduced
density matrix p4 p always has positive eigenvalues since it is a semi-positively de-
tined operator, the partially transposed matrix pgl p can have negative ones, when at
least one of the two two-level systems has negative eigenvalues. This can lead to a
nonvanishing logarithmic negativity.

Condition for non-vanishing logarithmic negativity

With increasing ¢ the splitting between E_ and E_ increases, which for sufficiently
large J turns one of the eigenvalues negative. In order to obtain a more quantitative
description of the behavior of the logarithmic negativity, we solve the eigenvalue
problem of the matrix (4.32), and similarly for the other two-level system, searching
for the conditions which lead to a negative eigenvalue and therefore to a nonvan-
ishing logarithmic negativity. As a result we obtain the following inequalities:

03 5(2,3) > pap(1,1)pap(44), (4.33)

0% 5(L,4) > 0a5(2,2)045(3,3). (4.34)

Egs. (4.33) and (4.34) give a quantitative statement concerning how strong the cou-
plings pa 5(2,3), pa,5(1,4) must be to lower the eigenvalue below zero.

To achieve a better physical intuition for the behavior of the logarithmic nega-
tivity as a function of distance, we express the conditions (4.33) and (4.34) in terms
of the two-point correlation functions using the prescription in Eq. (4.29). These
functions, in some particular limiting cases, are described by universal behaviors
allowing a simple analysis of the conditions (4.33) and (4.34) and consequently it is
possible to have a clear idea on the spatial structure of the logarithmic negativity for
two spins. For simplicity we consider only Eq. (4.33), but similar observations hold
for Eq. (4.34). Since

PA,B (2/ 3) = Pxx T Pyy (4.35)
PA,B(L 1) =1+4+p0;.— 00,z — Pz,0 (4.36)
048(4,4) =1+ 022+ p0z + P20, (4.37)
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FIGURE 4.7: Eigenvalues E* of the partially transposed reduced den-
sity matrix pT 15 in Eq. (4.32), as a function of & . While the full lines cor-
respond to E%, the dotted ones correspond to the unperturbed eigen-
values E1+. When ¢ is sufficiently large such that the eigenvalue E*
becomes negative, the logarithmic negativity starts to take a nonzero

value.
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Eq. (4.33) reads

(1- PZ,Z)z_(Pz,O - PO,Z)2 <

(4.38)
(Oxx — Py,y)z + (Px,y + Py,x)z-

Eq. (4.38) can be further simplified noting that the translational invariance of the sys-
tem implies pg, = p;0. Moreover, the terms p, , and p, » vanish because the entries
of the reduced density matrix p4 g have to be real due to time-reversal symmetry.
Using all this information, Eq. (4.38) simplifies to

(1- Pz,Z)z < (0xx — Py,y)z- (4.39)

In other words, using the definition of the coefficients: pyx = (0707, ), pyy =

(o}o] 1) and p;» = (0707, ), we can rewrite Eq. (4.39) as following

(1 — (o0, 1))* < ({o7 o)) — (ofoy )% (4.40)

Vanishing logarithmic negativity at large distance

From Eq. (4.39) one can directly see the vanishing logarithmic negativity when the
two spins are very far apart. In this regime, the correlation functions follow a generic
behavior:

prx = (070}, 1) ~ e /b 0. (4.41)
—00

pyy = (0107,1) ~ e — 0. (4.42)

P2z = (07104,1) ~ (01)(0341) #O. (4.43)

Thus, in the limit d — oo, both p, x and p,, go to zero and therefore the inequality
(4.39) cannot be satisfied leading to a vanishing logarithmic negativity. In addition,
the two-level system description is able to predict that the logarithmic negativity
is zero not only in the singular point d = oo, but in an interval of nonzero extent
d < oo. For a general field / in the paramagnetic phase, i > h., both the magne-
tization and correlation along z are finite but smaller than one. Consequently, the
diagonal elements in the matrix (4.32) are strictly larger than zero, as one can real-
ize from Eqgs. (4.36) and (4.37). In order to argue the existence of a finite interval
of distances where the logarithmic negativity vanishes, let us first begin from the
case where the two spins are infinitely far apart from each other, meaning that the
matrix (4.32) is diagonal because of the exponential suppression of the off-diagonal
elements announced by Egs. (4.41), (4.42) and (4.35). As the distance d decreases, the
off-diagonal element p4(2,3) = J starts to have a nonzero value, affecting pertur-
batively the eigenvalue of the matrix (4.32). In particular, using perturbation theory
in J, the shift of the eigenvalues is proportional to the square of the coupling of the
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two level system ¢

52
Ey—E_’
supposing that E+ are nondegenerate. Let us point out that the unperturbed eigen-
values E, appearing in Eq. (4.44), cannot assume negative values since they corre-
spond to the diagonal elements of p4 p which are probabilities. As a consequence,
0 must be sufficiently large to make at least one eigenvalue negative. This can oc-
cur only when the distance between the two spins is less than a certain threshold,
d < d, since the strength of J is exponentially suppressed with d as suggested by
Egs. (4.41), (4.42) and (4.35).

While the condition for nonzero logarithmic negativity in Eq. (4.39) holds also for
small distances d, the exponential structures of the correlation functions in Egs. (4.41),
(4.42) are no longer valid since they describe the asymptotic behavior in the limit
d — co. Nevertheless, the strength of § decreases with d, as we observe from the
nonzero entanglement between the two spins in the paramagnetic phase at short
distance, see Fig. 4.3 panels (d) and (e). Moreover, nonzero entanglement between

two spins at short distances was already shown in a variety of works [131, 128, 129,
130, 132].

Ef —E4+ (4.44)

4.7.2 Reduced density matrix at the critical point

The two-level system description introduced in the previous section holds also at
criticality, since only in the symmetry-broken phase the matrix elements po x, 0zx, P0y, Pzy
are nonzero.

The main difference to the paramagnetic phase consists in the functional form of
the order parameter correlation function (4.41). Specifically, it exhibits a power law
decay instead of an exponential one: pyy ~ d~ ", with 5 the critical exponent of the
correlation function whose value depends on the universality class of the problem.
For the 1D-Ising transverse field, = 1/4. Although we mentioned differences
between the two regimes, the same conclusion concerning the spatial structure of
the two-spins holds.

4.8 Discussion

In this chapter we have studied the spatial entanglement structure of the transverse-
tield Ising chain at zero and nonzero temperatures. Specifically, we have investi-
gated the logarithmic negativity between two disjoint blocks of equal size ¢ as a
function of their separation, which is an entanglement analog to a quantum correla-
tion function.

We have found that for any fixed size ¢ of the blocks there exists an entanglement
threshold at a distance d* beyond which the logarithmic negativity vanishes iden-
tically. This holds across the whole phase diagram of the system including also the
quantum critical point where the system exhibits long-ranged quantum correlations.



4.8. Discussion 81

The influence of temperature onto the spatial entanglement structure as measured
by the logarithmic negativity depends crucially on the size ¢ of the blocks. The
larger d* (for increasing ¢) the more important the influence of temperature, cutting
off long-range entanglement.

For small blocks ¢ the entanglement threshold d* appears on short distances on
the order of a few lattice spacings even at the quantum critical point. In this case
the precise value of d* is determined by nonuniversal short-distance properties that
depend on the microscopic details of the model. However, using a simple effective
model we have found for the case ¢ = 1 that the existence of the threshold d* can be
derived solely from the universal long-distance properties.

A vanishing logarithmic negativity for blocks of size ¢/ = 1 implies that the two
corresponding qubits are unentangled, because the PPT criterion (whose violation
is measured by the negativity) for the separability of a quantum state is not only
necessary but also sufficient. For larger blocks ¢ > 1 the PPT criterion is not suffi-
cient anymore, such that a vanishing logarithmic negativity at distances larger than
d* does not necessarily imply that the two blocks are completely unentangled. Thus,
we cannot exclude that there exist other measures signaling nonzero entanglement.
However, it is important to note that the logarithmic negativity gives a bound on the
distillable entanglement, such that a vanishing logarithmic negativity implies that
no Bell pairs can be extracted from the state.

At first sight the already known result of a finite entanglement threshold d* < oo
for ¢ = 1 at the critical point might not comply with expectations originating from
strong quantum correlations or the well-established violation of the area law for the
entanglement entropy. The results of our work provide a quantitative description of
the crossover from ¢ = 1 to £ > 1 upon increasing /.

We have studied the spatial entanglement structure for the transverse-field Ising
chain so that it is a natural question to which extent our results extend to a broader
class of systems. The effective model for the reduced density matrix at £ = 1, which
we used to argue about the existence of an entanglement threshold, can be straight-
forwardly applied to other models as well, independent of the dimension provided
the blocks consist of spin-1/2 degrees of freedom and the system resides in a para-
magnetic phase. Our conclusions also hold for the critical point whenever the quan-
tum correlations are long-ranged along one particular direction. This might change,
for example, in the case the transition is associated with a broken U(1) instead of
Z, symmetry. For larger block sizes ¢ > 1 the situation is much less clear on general
grounds and deserves a further investigation.
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Chapter 5

Eigenstate spin-glass order parameter

Very few believed [localization] at the time, and even fewer saw its importance;

among those who failed to fully understand it at first was certainly its author. It

has yet to receive adequate mathematical treatment, and one has to resort to the

indignity of numerical simulations to settle even the simplest questions about it.
—Philip W. Anderson, Nobel lecture, 8 December 1977

Recently, it has been proposed that phases of quantum many-body systems may
not only be characterized in terms of their thermodynamic properties but also on
the level of single eigenstates [173, 174, 175, 176, 177, 178, 26, 179]. These so-called
eigenstate phases are protected by nonergodicity where the long-time dynamical
properties of the system cannot be captured by a thermodynamic ensemble. Conse-
quently, systems can exhibit order in steady states resulting from real-time dynamics
although the thermal states at the corresponding energy density are featureless. The
protecting nonergodicity can be generated by strong quenched disorder [180, 11,
181, 24, 182, 176, 183, 184, 185, 186, 26, 187, 188] or dynamical constraints due to
gauge invariance [189, 190, 191]. Recently, the dynamical signatures of such eigen-
state phases have been probed in experiments including the observation of many-
body localization (MBL) [192, 193, 194, 195, 196, 197] or discrete time crystals [198,
199].

MBL phases may not only be characterized by their ergodicity breaking, but can
also host ordered phases such as the MBL spin-glass [173, 174, 179], see Fig. 5.1. The
MBL spin-glass is challenging to access in a dynamical measurement and therefore
experimentally since the conventionally used Edwards-Anderson order parameter
is a two-point correlation function in time. In this chapter, we show that MBL spin-
glass order can also be detected from two-site reduced density matrices, which we
use to construct an eigenstate spin-glass (ESG) order parameter.

5.1 MBL Spin-glass phase

As we mentioned before, we aim to show that MBL-SG order can be detected from
two-site reduced density matrices, which we use to construct an eigenstate spin-
glass (ESG) order parameter. The information about reduced density matrices and
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FIGURE 5.1: Phase diagram of the Ising model. € is the energy density
relative to total bandwidth. The axes give the energy density above the
ground state and the disorder strength. The colored areas are guides
to the eye. The data are obtained from finite size scaling of entangle-
ment difference, AS, = tlgg Su(t) — S,(0), after a local quench and the

spin-glass order parameter, Eq. 5.1; The thermal phase is characterized

by extended domain walls, the MBL paramagnetic phase by localized

domain walls which are created and removed in pairs (dashed), and

the MBL spin glass by localized nonoverlapping domain walls. Note
that this figure is the result from the reference [174].
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its properties has been described in section 4.2.1. We find that this ESG order param-
eter captures MBL-SG phases both in eigenstates as well as in the nonequilibrium
dynamics from a local in time measurement, which makes MBL-SG order accessible
within current experiments in quantum simulators. In previous works MBL spin
glass order in an eigenstate |¥) has been detected for spin-1/2 systems using an
Edwards-Anderson (EA) order parameter [200, 173]

Z (Flojoi|¥)?, (5.1)
i,j=1

xEA - Lz

where 07,1 = 1,...,L, denotes Pauli matrices on site i with L the total number of
lattice sites. This order parameter requires access to single quantum many-body
eigenstates, which experimentally is not achievable and also limits numerical stud-
ies to exact diagonalization and therefore the reachable system sizes. While Xga can
also be rewritten in the time domain, a measurement of Xga then requires access to
a two-time correlation function at large times, which is experimentally challenging
and not possible within current quantum simulator implementations.

5.2 Eigenstate spin-glass order parameter

For the definition of the eigenstate spin-glass order parameter Xgsg, let us first fix
two lattice sites i and j. Moreover, let us denote the reduced density matrix of these
two sites by p;;, which can be obtained from the full density matrix p by tracing
out the complement of the two sites i and j. The main idea behind Xgsg is to not
calculate the square of the spin-spin correlator in Eq. (5.1) for the full quantum
many-body eigenstate, but rather on the local equivalent which are the eigenstates
of the reduced density matrix p;j;. Accordingly, we diagonalize the 4 x 4 matrix

Pij = L P, |1p )( 1] to find its eigenvalues (p;), eigenvectors ( |1pn>) and calculate
the following quantity:

Esc = Z P ]|‘7i20'jz|’7b2>2- (5.2)
Finally, we perform a spatial average over all pairs (i, j) via:

XESG = 777 73 LIL—1) _1 ZXESG (5.3)
z#]

It is the central result of this work that for a paradigmatic MBL spin-glass model the
Xgsc detects the eigenstate spin-glass order as we show in detail below. Thus, MBL
spin-glass order doesn’t require knowledge of the full quantum many-body eigen-
state, but rather only the local information contained in the reduced density matrix.
We compare Xgsg and Xga both in the GS for large systems using DMRG and in
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highly-excited states using exact diagonalization. We find numerical evidence that
both of these quantities are not only quantitatively close but also can be used as or-
der parameters for the MBL spin glass transition in the studied model. Importantly,
we also show that Xgsg can be used as a dynamical measure to detect the MBL spin-
glass order. In particular, we find that for typical initial conditions, the long-time
limit of Xgsg is nonzero in the ordered phase and vanishes in the paramagnetic one.
However, towards the transition the dynamics becomes very slow such that access-
ing the structure of the transition remains challenging. In the end we will discuss
how to observe our findings in current experiments.

5.3 Model and method

We study the ESG order parameter Xgsg for the following quantum Ising chain with
open boundary conditions,

R 1 L-1
He=mg | L Jieidia Z Jrofofiy + Zhi‘af : (5.4)
=1

where Uix’z, i = 1,...,L are the Pauli matrices and L denotes the total number of
lattice sites. All the parameters appearing in this model are random and taken from
uniform distributions. We choose |7 € [—],]J] and k¥ € [—h, k] from uniform box
distribution. For vanishing ] the model reduces to the transverse field Ising chain,
which is integrable and exactly solvable by a mapping to a quadratic fermionic the-
ory using a Jordan-Wigner transformation [201]. To make the model generic and
non-integrable we add a weak random | € [_Z’ 71] term, which becomes equiva-
lent to a two-particle interaction in the fermionic language and renders the model
non-integrable.

The transverse-field Ising chain with JX = 0 exhibits a T = 0 quantum phase
transition from a paramagnetic (] < h) state to a doubly degenerate spin-glass
ground state (J > h) [2]. In order to explore the ground state physics for the in-
teracting model at J¥ # 0, we use density-matrix renormalization group (DMRG)
techniques within a matrix product state formulation [202] and used second order
Suzuki-Trotter decomposition to exponentiate the unitary operator [203]. This al-
lows us to probe the phase transition for large system sizes reducing finite-size ef-
fects. In order to access the high energy eigenstates we use standard exact diago-
nalization and typically calculate 16 eigenstates from the middle of the spectrum
and perform an average of Xgsg over this set of states. At excited energies around
~ 1000 disorder configurations are used to perform statistical averaging of Xga and
Xgsg, while in ground state ~ 100 disorder realizations are considered for averag-
ing. Finally, for simulating the dynamics for large system sizes the time-evolving
block decimation technique is used. To minimize finite-size effects, we calculate
Xga and Xgsc by averaging not over all pairs (i, j) of lattice sites but rather restrict



5.4. Eigenstate results 87

to those pairs with |[i —j| > 4. Also to minimize the edge effects for such small
system sizes we excluded the edge site contribution in Xga and Xgsc.

5.4 Eigenstate results

First we study the Xgsc in eigenstates and compare it to the Edwards-Anderson
order parameter Xga . In Fig. 5.2(a-d) we plot both Xgs and Xgsg for the ground
state calculated using the density-matrix renormalization group for system sizes
L = 32,48,64 and exact diagonalization for L = 8,12,16 as a function of the spin-
spin coupling strength strength J/h. The top panel shows the ground state results.
As expected, for weak couplings (J/h < 1.5) the system is in a paramagnetic phase
and thus Xga vanishes. The Xgsg is showing an analogous behavior, as can be seen
in Fig. 5.2(b). In the spin-glass phase Xgx is finite and almost independent of sys-
tems size, as we find also for Xgsg, see Fig. 5.2(b). Overall, these results suggest that
the Xgsg parameter can be taken as an order parameter for the spin-glass quantum
phase transition in the considered model.

In Fig. 5.2(c-d) we study spin-glass order in excited states of the same model
Eq. (5.4) where we observe an overall similar behavior. For sufficiently weak cou-
plings both Xga and Xgsg take small values indicating that the system does not
exhibit MBL-SG order. This is different for large couplings where both Xgs and
Xgsc saturate to a large nonzero value almost independent of system size. More
quantitatively, we analyze the finite size dependence for strong and weak couplings
by plotting both the eigenstate order parameters as a function of 1/L for several dis-
order values (J/h = 0.6,0.8,1.0,2.5) in Fig. 5.2(e-f). While for large couplings both
Xga and Xgsg are almost independent of system size, at weak couplings a linear
extrapolation in 1/L suggests vanishing values. This extrapolation should be taken
only as a guide to the eye as the precise functional form of the L-dependence is not
known. Due to the limited system sizes and the resulting strong finite-size effects
we don’t attempt to extract the MBL-SG transition from the exact diagonalization
data. We find, however, that the measurement of Xgsg in the real-time dynamics, as
discussed in the following, is much better suited for that purpose.

5.4.1 Quench dynamics

It is a crucial observation that Xgsg can be computed for any state. In particular, we
now show that this makes it possible to monitor the buildup of MBL-SG order in the
quantum real-time dynamics from a local in time measurement. This observation is
not only useful from a theoretical point of view, but also makes the observation of
MBL-SG phases accessible for current experiments in quantum simulators.

In the following we study the real-time evolution of the ESG order parameter
Xgsc(f) from initial spin configurations with random orientations along the ¢* di-
rection therefore respecting the Z, symmetry of the Hamiltonian. We compute the
dynamics using time dependent DMRG (tDMRG) or TEBD using the second order
Trotter decomposition with dt = 0.01, where we kept only those states with singular



Chapter 5. Eigenstate spin-glass order parameter

Excited state Ground state

Excited state

XeA Xesa

(-

D
-
~
w
[\

%

e :
v~ [ =48 | r
=TT s Il
03l - [ =064 V,'?ﬁ I Qégf' _
/ﬁ QIIJ'
& e
,;&I 8 o ! I
0.0 k-8 - &% (2) : -lB——B———E-T&”‘% . ( ))_
0 2 4 0 2 4
0.6F —4- L=10 1o ‘ e
L = 12 -”’;;E;;
4 [ =14 o
L4 L=16 & 1 1 & |
0.3 e O,:E,ﬁ
- oA
R o5
g B
oobana®® O] e @]
J/h J/h
X J/h=0.8
}oJ/h=10
0.2 Jh=20 _ o o0 T ]
T e
ﬂ ,,././*"’*"/ X
—————————— e /"""V:::-—‘:,’_’." SIARES
0.0& szsszzzszissiasseae 5?:3?:--~$::::::‘$_ R *':' T y
0 i1 L L 9 111 1
16 14 12 10 16 14 12 10
1/L 1/L

FIGURE 5.2: Eigenstate spin-glass order. Upper panel: (a) Shows
the Edwards-Anderson order parameter, Xga, in the ground state of
the Hamiltonian Eq. (5.4) obtained using DMRG for system sizes L =
32,48,64 as a function of coupling strength J/h. While for weak cou-
plings Xga approaches zero, for large J/h 2 1.5 Xga becomes nonva-
nishing in the expected spin-glass ordered phase. (b) The eigenstate
spin-glass order parameter Xgsc in the ground state for the same sys-
tem sizes. (c) Xga in excited states from the center of the spectrum for
system sizes L = 10,12,14,16 obtained 4from exact diagonalization,
and compared to Xgsg (d). In (e-f) we show the finite-size dependence
of XgsG for excited states. For couplings J/h < 1, Xgsg tends towards
a vanishing value for increasing system sizes, whereas for J/h 2 1itis
large and nonzero. The included lines are a guide to the eye and don’t
represent a quantitative extrapolation.
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values above 10~°. An analysis of the numerical accuracy and time steps in TEBD
calculations can be found in the appendix C.

Initial state along c*

In Fig. 5.3 we show the dynamical evolution of Xgsg, where we compare two repre-
sentatives for the temporal behavior for weak couplings in Fig. 5.3a and for strong
couplings in Fig. 5.3b, respectively. At t = 0 we have that Xgsg(t = 0) = 0 since the
initial condition is structureless and does not contain any spatial correlations. In the
transient stage of the dynamics we observe an increase of Xgsg(f) to nonzero values
as a consequence of an initial buildup of spatial correlations. On longer time scales
two qualitatively different dynamical regimes emerge depending on the coupling
strength, suggesting that MBL-SG order can be detected from the long-time limit of
XgsG(t). While for weak couplings Xgsg(f) decays for increasing time, this is not
the case for strong couplings, where Xgsg(f) saturates to a nonzero value.

Initial state with broken Z, symmetry

In this section we show additional data for quench dynamics when the initial state
breaks the Ising Z, symmetry by choosing product states aligned along the z-direction.
As seen in Fig. 5.4 we observe the same long-time dynamics as for the initial condi-
tion studied in the main text.For weak couplings the Xgs; values goes to zero with
increasing system sizes at long times. For large couplings instead, Xgsg remains
finite at long times for all system sizes.
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FIGURE 5.3: Quench dynamics. Dynamical evolution of Xgsg starting
from a state where all spins are initially aligned along the transverse
direction. (a) For weak couplings J/h = 1.0 Xgsg is small and decays
on long-time scales. (b) For larger couplings in the eigenstate spin-glass
ordered phase J/h = 3.0, Xgsg increases steadily with time approach-
ing a nonzero value in the long-time limit. The shaded region indicates
the statistical error in the data due to a finite set of disorder averages.
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FIGURE 5.4: Quench dynamics (a) Shows the dynamical evolution of

Xgsg starting from an initial state where all spins initially align along

the z- direction. Because of the initially broken Z, symmetry at t = 0,

the XgsG is non-zero as seen in both the plots. For weak coupling J/h =

1.0 the Xgsg decays at long times. (b) For strong couplings | = 3.0 the

Xgsg becomes finite instead. The shaded region indicates the statistical
error in the data.

Idenfifying the transition dynamically in time

Figure 5.5 demonstrates how one could possibly identify the MBL-SG transition dy-
namically. In each of the panels of this figure we plot for different system size the
value of Xgsg as a function of the coupling strength and how this value changes
as a function of time t. For each L one can identify two dynamical regimes, one
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where Xgsg increases and one where Xgsg decays as a function of time within ac-
cessible time scales in numerical simulation. We identify the regime where Xgsg
goes to a nonzero value as the MBL-SG phase. From the plots in Fig. 5.5 we observe
a crossing point for each system size which suggest that it might be possible to es-
timate the critical coupling strength for the MBL-SG transition using Xgsg. From
our current data, however, this does not appear to be possible accurately. For the
exactly solvable case | = 0, it is well known that the MBL spin-glass transition is
located at [/h = 1 [201]. Computing with tDMRG the dynamics for the same sys-
tem sizes and times, we find that in this case the crossing point is located around
J = 1.2 [204], which overestimates the region of the MBL paramagnet. We attribute
this observation to the slow expected dynamics in these models, which can show
slow power-law or also logarithmic relaxation [205]. While the crossing point for
the times accessible within tDMRG shows only a weak dependence on time, it is
very likely that it exhibits a further slow drift on even longer times scales.

In Fig. 5.6 we show data for Xgsg in the vicinity of the transition for the integrable
case of the model studied in the main text (J* = 0), where the transition is known to
be at J/h = 1[201]. From this plot one can again identify two phases separated by a
crossing point, with which one might identify the location of the MBL-SG transition
in the asymptotic long-time limit. From our finite-time data, however, we find the
crossing point at | /h ~ 1.2, which overestimates the transition by 20 %. As in the
main text, we attribute this discrepancy to the slow dynamics that can occur in these
models, which effectively implies that one would need to reach even longer times
to see a drift towards the known transition value.

5.5 Long-range correlated Ising Model

In this section we consider a different model and show that also in the presence of
long-range interaction the eigenstate order parameter shows the essential behavior
of MBL-5G. The model we consider is the following;:

_ 1y 00
"= N L

). ofor + Zhiaf, (5.5)
i<j i

— i<

where N(a) = ¥, j ﬁ is the Kac normalization. (2; is taken from an uniform

distribution [0, W], while the field is distributed randomly between [—h;, h,]. Like
in the main text here we also calculated both the Edwards-Anderson parameter
Xgaand the eigenstate order parameter Xgsg. It has been theoretically proposed
that this model can be realized in current trapped ion experiments [206, 207].
Figure 5.7 shows the parameter dependence of both Xga and Xgsg along with the
finite-size dependence. The calculation is performed for excited states taken from
the middle of the spectrum and for &« = 2.0. As one can see the behavior of Xga
is well reproduced by the Xgsg, however again due to strong finite size effects the
critical disorder value for MBL-paramagnet to MBL-SG transition cannot be reliably
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FIGURE 5.5: Eigenstate spin-glass order parameter across the transi-

tion. Time evolution of Xgsg as a function of disorder strength J/h for

different system sizes, L = 32,48, 64, 80 in different panels. For weak

couplings Xgsg decays with time, while in the opposite regime it in-

creases. A crossing point separates these regimes of opposite dynami-
cal behavior.
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FIGURE 5.6: Eigenstate spin-glass order parameter Xgsg across the

transition in the integrable model, where the coupling along the x-

direction is taken to be zero (J* = 0, see main text for further details

of the model). For weak couplings Xgsg decays with time, while in the
other regime it increases.

detected. We have used similar averaging procedure as it is done for all the data in
the main text.

5.6 Discussion

In this chapter we have provided evidence that the detection of MBL spin-glass
order does not require access in the full many-body eigenstates, as is necessary for
the previously used Edwards-Anderson order parameter. We rather find that MBL
spin-glass order in random quantum Ising chains is contained in two-spin reduced
density matrices.

This observation has several implications. On the theory side, reduced density
matrices can be accessed with a variety of methods, whereas full eigenstates require
in general the use of exact diagonalization, which a priori limits the accessible sys-
tem sizes. We have shown in this chapter, for example, that our proposed eigenstate
spin-glass (ESG) order parameter can be computed using the density-matrix renor-
malization group method, which allows us to reach systems up to at least 80 spins.
This can be achieved, since the ESG can be obtained from a local in time measure-
ment in contrast to the Edwards-Anderson order parameter, which either requires
access to the full eigenstates or to a two-time correlation function.

The property, that the ESG can be obtained by a local in time measurement,
not only makes MBL spin-glass order theoretically more easily accessible, but also
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itative extrapolation.
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makes an experimental detection more feasible. Still, the ESG requires the full recon-
struction of a reduced density matrix of two spins. While this limits the range of ap-
plicable experimental platforms, reduced density matrices are accessible in so-called
quantum simulators such as trapped ions [208, 209], superconducting qubits [210],
Rydberg systems, or ultra-cold atoms in optical lattices [211]. The observation of
MBL spin-glass order remains nevertheless challenging since the experimental re-
alization of system Hamiltonians, that are capable to host MBL spin-glass ordered
phases, has not yet been reported. For trapped ions systems, however, a way to gen-
erate an Ising Hamiltonian with random spin interactions has been proposed [206,
207]. In general, random interactions might also be straightforwardly realized us-
ing the digital approach to quantum simulation [212, 213, 210] which is currently
limited, however, by the accessible system sizes.

We have analyzed the ESG for a random quantum Ising chain, so that it is a nat-
ural question to which extent our results generalize to other models. While address-
ing this question on general grounds is beyond of the scope of this work, we also
showed numerical results for a long-range Ising model with algebraically decaying
spin-spin interactions, whose realization in a trapped ion system appears feasible
within current experimental techniques. While finite-size effects in this model are
stronger than for the nearest-neighbor Ising chain, we find a similar behavior of the
Edwards-Anderson order parameter and the ESG, indicating that our results extend
beyond the particular quantum Ising chain studied here.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have considered three different topics in modern condensed matter
physics. We have studied these topics with state-of-art numerical techniques: lattice
Monte Carlo and tensor network methods. Each of the topics reflects a different as-
pect of the field. However There are other important topics in modern condensed
matter that we could not survey due to the time limitations, for example, the topo-
logical phase of matter or high-temperature superconductivity and so on.

In chapter 3, we revisited the phase diagram of Falicov-Kimball model. Espe-
cially we addressed the intricacies of the phase diagram above the charge ordering
transition. We found out that the WL regime is due to the finiteness of the under-
lying lattice and vanishes in the thermodynamic limit. The Al phase is captured by
disorder extensions of the DMFT with the addition of quenched disorder. We have
studied the charged ordered phase in detail and found out the critical exponents
associated with the onset of charge order in that region coincide with those of the
classical two-dimensional Ising model.

In chapter 4, we have studied the spatial structure of entanglement for transverse
tield Ising chain using logarithmic negativity at zero and nonzero temperatures. We
have found that for any fixed size ¢ of the blocks there exists an entanglement thresh-
old at a distance d* beyond which the logarithmic negativity vanishes identically.
This holds across the whole phase diagram of the system including also the quan-
tum critical point where the system exhibits long-ranged quantum correlations. The
influence of temperature onto the spatial entanglement structure as measured by the
logarithmic negativity depends crucially on the size ¢ of the blocks. The larger d*
(for increasing /) the more important the influence of temperature, cutting off long-
range entanglement. Logrithmic negativity is based on PPT criterion and for larger
blocks ¢ > 2, although it might be zero for larger distances but this does not neces-
sarily imply that the two blocks are completely unentangled. But as well we can not
exclude that there exist other measures signaling nonzero entanglement. However
it is important to keep in mind that the logarithmic negativity gives a bound on the
distilable entanglement, such that a vanishing logarithmic negativity implies that
no Bell pairs can be extracted from the state.

In chapter 5 we considered MBL phase of matter where the effects of disorder be-
come important. Our focus was inside the MBL phase that hosts another interesting
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phase, the so-called MBL spin-glass phase. We have introduced an order parame-
ter called eigenstate spin-glass order parameter. It overcome the current dynamical
and experimental challenges to detect this phase. We have provided evidence that
the detection of MBL spin-glass order does not require access to the full many-body
eigenstates, as is necessary for the previously used Edwards-Anderson order pa-
rameter. We rather find that MBL spin-glass order in random quantum Ising chains
is contained in two-spin reduced density matrices.

We find that this ESG order parameter captures MBL spin-glass phases in ran-
dom Ising chains both in many-body eigenstates as well as in the nonequilibrium
dynamics from a local in time measurement.

6.2 Outlook

The performed results in chapter 3 may shed some light on the study of other types
of lattices, for instance, triangular lattice in which one has to consider the frustra-
tion effects or three-dimensional lattices. As well the results might be useful for
studies of localization in cold atoms. Recently, using neural networks and machine
learning techniques, people have studied different problems in condensed matter
physics. One can for future studies use such methods for bigger lattices and higher
dimensions.

Regarding chapter 4, for future considerations, it is interesting to look at the
behavior of logarithmic negativity for other models and with different natures. It
also would be interesting to study the dynamic properties of entanglement dynam-
ics and its propagation with time for different model following a quantum quench.
This can help to understand these problems from a different point of view.

Using our results in chapter 5, one can dynamically study the systems that show
a spin-glass phase in the context of MBL phase. As we have discussed there in our
results, one can access the reduced density matrix experimentally, for example, our
results can be used to observe MBL spin-glass order within current experiments
in Rydberg atoms and trapped ion systems. This lets to measure the amount of
glassiness in such systems in the laboratory. Recent works on floquet-driven MBL
systems and time crystals[214, 215, 216, 217, 218] suggest a glass phase in their phase
diagram. This can be motivating to investigate these systems and their MBL spin-
glass phases spatially in space and time using our order parameter.
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Appendix A

Coherent state path integral

From coherent state path integral formalism we can write the partition function as

follow
Z= / ¢

S, 9] = [ T (§ e+ H(G,4) ~ NG, 4) (a2)

for the general Hamiltonian

_z§(0) D@, p)e S0 (A1)
—Cy(0

and

H— uN = 2 ij ],1(51] al i+ Z Vz]klﬂz a] . Apay (A.3)
i
we have
5 [1[3, = / dt [Z 1/)1 )51] + hz] l/J] + Z Vz]kllpz lP]( ) -lPk(T)lPl(T)
ij..kl
(A4)
in frequency domain and if V is a two body operator we have
Y] = ) Piw, [(iwn — W)6ij + hif] Y, (A.5)
ijwy
1 -
+ n Z Z Vz]qu]zwnl lpiwnz IP]‘CUn:,’ wlwn4 5(17;11 +wn2,wn3wn4 (A'6)
‘B ijkl Wny Wiy Wiy Wiy
with /8 b
2nm osons
“n = { (2n+1)m/p fermions. nez
also it is possible to write the action as follow
S - SO + Sii’lt
- Z Pico, [ ] Pjwy + Sint (A7)
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Generally we can write Z as follow

7 = Zole” J& ATV (i ()5 (7). i (T (7)) Yo (A.8)

where (¢~ /8 7TV B EOF @9y i

— B arv (i () (7). (T) (T 1 B e
(e”Jo AtV (i (1) (T)- i (D) ( ))>0 _ Z_O 5(8) = —2§0) DG, p)e S[) (A9)
¥(B) = —Cy(0)
and
% = /lﬁ(ﬁ) _ 50y D@ p)e Sl (A.10)
¥(B) = —Cy(0)

where S is action without interaction or perturbation.




101

Appendix B

Finite size scaling

We know that the phase transition occur only in thermodynamic limit and due to
finite memory and processing time, it is not possible to do the calculation in ther-
modynamic limit, for this reason physicists do the simulation for finite lattice sizes
and then with scaling hypothesis, analyze finite systems and deduce conclusions for
thermodynamic limit. This method of scaling called Finite Size Scaling or FSS.

B.0.1 Critical exponent

When we are near the critical point T, a quantity like g(¢) obeys a exponential law
as

g(t) =t (B.1)
And t = r-r
quantity on pcroblem. In our problem and in square lattice g is C, and x. A is critical
exponent of the g(¢) and determine as

. This g could be specific heat C, or susceptibility x or any related

A = lim 81 (B.2)
t—0 Int

So t" describes g(t) at the transition.

B.0.2 Scaling hypothesis

For the quantity g(t) we have following scaling behavior at T,
g(t) ~ LMV g (tLY) (B.3)

and @, (tL/") is universal scaling function.
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Thermodynamic limit Finite size system
X () ~ [t Xr(E) ~ L7/7y (+L1Y)
Co(t) ~ [t Co(t) ~ L™%/Vapc, (tL1/V)

TABLE B.1: Thermodynamic limit and finite size system.

B.0.3 The results of the FSS

The results of finite size scaling is to extract the correct set of values of exponents
including v, 7, « and T, from results that we gain from simulation, Fig. 3.8 a,b and
c. Fortunately we have T, from our results and there is no need to calculate it with
FSS. With fourth order Binder Cumulant B G we can calculate the T, .

Also there is scaling behavior for fourth order Binder Cumulant B G [85] as follow

Bs = Bs(tL") (B.4)

Then after FSS, to extract scaling function ¢ (tL!/") from numerical data one
could define

yo=g(t)L™" , xp =LY (B.5)

B.0.4 How to do FSS

for this aim, in equation B.3 with Taylor expansion of CDg(tLl/ V) convert it to poly-
nomial form and keep N first terms as follow

P (tLYY) = LMV (ag + ; LYVt + ap L2V 12
+ a3 L3V 4 a LYV 4 L+ anLNVEN) (B.6)
From numerical data by using only the temperatures adequately close to T, for

different lattice sizes we can extract ag, a1, a2 ,..., an, T;, A and v by fitting B.6 with
numerical data.
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Schmidt Decomposition

Any vector |¥) € H1 ® H; can be expressed in the form
) :2@‘@% ‘cpf> (C.1)
]

for non-negative real Aj so-called Schmidt values, and orthonormal sets ’<P]L> € H;

and ‘Q)]L> € Hpwithj =1,2,3,.... There are density operators p; on H; and p, on
H» such that

(F(A@ DY) =Te[Ap)], (¥](1B)[¥) = Tr[Bos] (€2

for all observables A and B on H; and H>, respectively, and {‘CD]L>} may be chosen
to be the eigenverctors of p; corresponding to nonzero eigenvalues {p;} and the

vectors { ‘db}R> }, the corresponding eigenvectors for py, and the positive scalars ¢; =

N
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Appendix D

Error analysis in TEBD for ESG order
parameter

D.1 Optimal choice of TEBD parameters:

In order to reach long simulation time f one has to find optimal control parameters,
which are time step dt, and the number of the truncated states (kept state) Xyax.
We implemented the TEBD algorithm is such a way that we discarded states below
certain threshold, ¢.

Therefore the control parameters are the time step dt and the truncation error
threshold is e. The total error would increase at larger dt due to the Trotter error,
and at smaller dt due to the truncation error. It is reasonable to choose for small
times rather small values of dt in order to minimize the Trotter error and for large
times, to choose a somewhat coarser time interval, in order to push the time to as
large as possible [219]. We choose two small value for dt

hdt € [0.01,0.005] (D.1)
and for ¢ we consider different truncation thresholds
e€lle—7,1e—9,1e —11] (D.2)

In the Following we do the error analysis for two different initial states, first error
analysis for the results that we have shown in the main text of the paper and second
for initial state that break the Z, symmetry of the system in the z-direction, i.e., an
initial state where all spins are pointed randomly in the z-direction.

Figure D.1 and D.2 shows the error analysis for the initial states, which is product
state randomly directed in x-direction and z-direction respectively. Note that we
average over 1000 realizations for this simulation. In each set of TEBD parameters,
i.e., e and dt, the initial states remain unchanged, which give us confident that results
shown here and in the main text are well converged.

Figure D.1 right panel shows the evolution of the Xgsg for different TEBD param-
eters starting with an initial state, which is randomly pointed in z-direction. As it is
seen that for all the parameters choice of the TEBD algorithm the dynamics remain
unaffected. Here the discarded weight remains very small of the order 1le — 16.
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0  e=1e—07;dt =0.005/h e =1le—07;dt =0.01/h
e =1le—09;dt = 0.005/h o e=1e—09;dt =0.01/h
e =1le—11;dt = 0.005/h o e=1le—11;dt =0.01/h
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FIGURE D.1: Error analysis for different set of parameters (e, dt) for
non-MBL SG, J/h = 1.0, and MBL-SG, J/h = 3.0, phases for a chain
L = 80 with all initial states randomly pointed in the x-direction.
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L = 48 with all initial states randomly pointed in the z-direction.
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